Two different box-filling machines are used on an assembly line. The critical measurement influenced by these machines is the weight of the product in the boxes. Engineers are quite certain that the variance of the weight of product is o² = 1 ounce. Experiments are conducted using both machines with sample sizes of 64 each. The sample averages for machines A and B are x = 4.7 ounces and x = 4.9 ounces. Engineers are surprised that the two sample averages for the filling machines are so different. Complete parts (a) and (b) below. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. (a) Use the Central Limit Theorem to determine P(X-X≥0.2) under the condition that H₁ = H P(X-X≥0.2) = 0.1292 (b) Do the aforementioned experiments seem to, in any way, strongly support a conjecture that the population means for the two machines are different? Explain using your answer in (a). Since the probability in (a) negligible, the experiments support the conjecture. is not is
Two different box-filling machines are used on an assembly line. The critical measurement influenced by these machines is the weight of the product in the boxes. Engineers are quite certain that the variance of the weight of product is o² = 1 ounce. Experiments are conducted using both machines with sample sizes of 64 each. The sample averages for machines A and B are x = 4.7 ounces and x = 4.9 ounces. Engineers are surprised that the two sample averages for the filling machines are so different. Complete parts (a) and (b) below. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. (a) Use the Central Limit Theorem to determine P(X-X≥0.2) under the condition that H₁ = H P(X-X≥0.2) = 0.1292 (b) Do the aforementioned experiments seem to, in any way, strongly support a conjecture that the population means for the two machines are different? Explain using your answer in (a). Since the probability in (a) negligible, the experiments support the conjecture. is not is
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
100%
I need help with this please
choices are is or is not for the first blank and do or do not for the second blank

Transcribed Image Text:Two different box-filling machines are used on an assembly line. The critical measurement influenced by these machines is the weight of the product in
the boxes. Engineers are quite certain that the variance of the weight of product is o² = 1 ounce. Experiments are conducted using both machines with
sample sizes of 64 each. The sample averages for machines A and B are x = 4.7 ounces and x = 4.9 ounces. Engineers are surprised that the two
sample averages for the filling machines are so different. Complete parts (a) and (b) below.
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table.
(a) Use the Central Limit Theorem to determine P(X-XA≥0.2) under the condition that μ₁ = b
P(X-X≥0.2) = 0.1292
(b) Do the aforementioned experiments seem to, in any way, strongly support a conjecture that the population means for the two machines are different?
Explain using your answer in (a).
Since the probability in (a)
negligible, the experiments
support the conjecture.
is not
is

Transcribed Image Text:☑=
Areas under the Normal Curve
z
.00
-3.4 0.0003 0.0003 0.0003
.01
.02
.03
.04
-2.9
-2.8
-2.7
-1.0 0.1587 0.1562 0.1539
-0.9 0.1841
-0.8 0.2119 0.2090
-0.7 0.2420 0.2389
-0.6 0.2743 0.2709
-0.5 0.3085 0.3050
-0.0 0.5000
.00
.01
0.4960 0.4920 0.4880 0.4840 0.4801
.02
.03
.04
.05
.06
.07
0.0003 0.0003 0.0003 0.0003 0.0003
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004
0.0004 0.0004
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 -3.1
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0
0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9
0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 -2.8
0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 -2.7
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049
0.0048 -2.5
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162
0.0158 0.0154 0.0150
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192
-1.9 0.0287 0.0281 0.0274
0.0268 0.0262 0.0256 0.0250 0.0244
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1
0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0
0.1814 0.1788 0.1762 0.1736 0.1711 0.1685
0.1635 0.1611 -0.9
0.1660
0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 -0.8
0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7
0.2676 0.2643 0.2611 0.2578 0.2546
0.3015 0.2981 0.2946 0.2912 0.2877 0.2843
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 -0.3
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 -0.1
0.4761 0.4721 0.4681 0.4641 -0.0
.06
.07
.08
.09
.08
0.0003 0.0002 -3.4
0.0004 0.0003 -3.3
.09
10
Areas under the Normal Curve
0.0084 -2.3
0.0113
0.0110 -2.2
0.0146
0.0143 -2.1
0.0188
0.0183 -2.0
0.0239
0.0233 -1.9
0.0301 0.0294 1.8
0.0375 0.0367 -1.7
0.0465 0.0455 -1.6
0.0571 0.0559 -1.5
0.0694 0.0681 -1.4
0.0838 0.0823 -1.3
2.3
2.4
2.5
1
2.6
0.2514
0.2483 0.2451 -0.6
2.7
1
0.2810 0.2776 -0.5
2.8
0.3192 0.3156 0.3121 -0.4
2.9
C
.05
2
2
.00
.01
.02
.03
.04
.05
.07
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.3
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608
0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9
2.0 0.9772 0.9778 0,9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.0
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.2
0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.3
0.9934
0.9918
0.9922
0.9920
0.9925
0.9929
0.9927
0.9931 0.9932
0.9936 2.4
0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6
0.9965 0.9966 0.9967 0.9968 0.9969 0.9970
0.9971 0.9972 0.9973 0.9974
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978
0.9981 0.9982 0.9982 0.9983 0.9984 0.9984
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992
3.2 0.9993 0.9993 0.9994 0.9994 0.9994
3.3 0.9995 0.9995 0.9995 0.9996
3.4 0.9997 0.9997 0.9997 0.9997 0.9997
.00
.01
.02
.03
.04
.06
.08
.09
2
.05
2.7
0.9979 0.9979 0.9980 0.9981 2.8
0.9985 0.9985 0.9986 0.9986 2.9
0.9989 0.9989 0.9990 0.9990 3.0
0.9992 0.9992 0.9993 0.9993 3.1
0.9994 0.9994 0.9995 0.9995 0.9995 3.2
0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.3
0.9997 0.9997 0.9997 0.9997 0.9998 3.4
.06
.07
.08
.09
Q
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 16 images

Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman