Two common methods of improving fuel efficiency of a vehicle are to reduce the drag coefficient and the frontal area of the vehicle. Consider a car whose width (W) and height (H) are 1.85 m and 1.70 m, respectively, with a drag coefficient of 0.30. Determine the amount of fuel and money saved per year as a result of reducing the car height to 1.55 m while keeping its width the same. Assume the car is driven 18,000 km a year at an average speed of 95 km/h. Take the density and price of gasoline to be 0.74 kg/L and $0.95/L, respectively. Also take the density of air to be 1.20 kg/m3, the heating value of gasoline to be 44,000 kJ/kg, and the overall efficiency of the car’s drive train to be 30 percent.
Two common methods of improving fuel efficiency of a vehicle are to reduce the drag coefficient and the frontal area of the vehicle. Consider a car whose width (W) and height (H) are 1.85 m and 1.70 m, respectively, with a drag coefficient of 0.30. Determine the amount of fuel and money saved per year as a result of reducing the car height to 1.55 m while keeping its width the same. Assume the car is driven 18,000 km a year at an average speed of 95 km/h. Take the density and price of gasoline to be 0.74 kg/L and $0.95/L, respectively. Also take the density of air to be 1.20 kg/m3, the heating value of gasoline to be 44,000 kJ/kg, and the overall efficiency of the car’s drive train to be 30 percent.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 7 images