Two blocks 1 and 2 are connected by a rope over a pulley as shown. The pulley is very light (massless) and rotates with essentially no friction. Calculate the mass of block 1, m1, given that the mass of block 2 is m2=5.5 kg and that block 2 moves and accelerates downwards at 3.57 m/s2 when θ=35∘ and μk=0.4. I think that I need to be using Newtons second law but I just dont know how to solve this. Can you please help?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%

Two blocks 1 and 2 are connected by a rope over a pulley as shown. The pulley is very light (massless) and rotates with essentially no friction. Calculate the mass of block 1, m1, given that the mass of block 2 is m2=5.5 kg and that block 2 moves and accelerates downwards at 3.57 m/s2 when θ=35∘ and μk=0.4.

I think that I need to be using Newtons second law but I just dont know how to solve this. Can you please help?

Two blocks 1 and 2 are connected by a rope over a pulley as shown. The pulley is very light (massless) and rotates with essentially no friction. Calculate the mass of block 1, m1, given that the mass of block 2
is m2 = 5.5 kg and that block 2 moves and accelerates downwards at 3.57 m/s? when 0 = 35° and uk = 0.4.
Transcribed Image Text:Two blocks 1 and 2 are connected by a rope over a pulley as shown. The pulley is very light (massless) and rotates with essentially no friction. Calculate the mass of block 1, m1, given that the mass of block 2 is m2 = 5.5 kg and that block 2 moves and accelerates downwards at 3.57 m/s? when 0 = 35° and uk = 0.4.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY