tutt. 0 < x < 3. t > 0, which satisfies the boundary conditions u(0, t) = u(3, t) = 0 and the initial The solution of the wave equation Urx conditions u(, 0) = 0 and uz(x, 0) = 2 sin() - 3 sin(272) + 2 sin(372) is E sin () [an cos(t) + bn sin( 2nt)]. where u(x,t) = sin () an cos 2nnt 2nat 3 3 3 п-1 O a) b1 = 2, be = -3, bg = 2, bn O otherwise an 3 b9 1 b) b1 bn O otherwise 3 b6 an %3D 47 d a1 -, an = br = 0 otherwise 으, a6 ag O otherwise Od) a1 -3, ag = 2, an = bn 2, аб e) None of these

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Needed to be solve this multiple choice question correctly in 30 minutes and get the thumbs up please show neat and clean work please
The solution of the wave equation Urx
jutt. 0 < ¤ < 3. t > 0, which
satisfies the boundary conditions u(0, t) = u(3, t) = 0 and the initial
conditions u(, 0) = 0 and
uz(x, 0) = s
2 sin () - 3 sin(2rx) +2 sin(3Tr) is
u(x, t) = E sin(7) (n cos() + Bn sin()]. where
2nat
3
3
3
п-1
O a) b1 = 2, b6 = -3, b9 = 2, bn
O otherwise
an
3
bg
1
b) b1
bn
O otherwise
3
b6
an
%3D
c) a1
- an = b, -
O otherwise
2, a6
ag
O otherwise
Od) a1
=2, a6
3, ag = 2, an = bn
e) None of these
||
Transcribed Image Text:The solution of the wave equation Urx jutt. 0 < ¤ < 3. t > 0, which satisfies the boundary conditions u(0, t) = u(3, t) = 0 and the initial conditions u(, 0) = 0 and uz(x, 0) = s 2 sin () - 3 sin(2rx) +2 sin(3Tr) is u(x, t) = E sin(7) (n cos() + Bn sin()]. where 2nat 3 3 3 п-1 O a) b1 = 2, b6 = -3, b9 = 2, bn O otherwise an 3 bg 1 b) b1 bn O otherwise 3 b6 an %3D c) a1 - an = b, - O otherwise 2, a6 ag O otherwise Od) a1 =2, a6 3, ag = 2, an = bn e) None of these ||
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,