Tucker, Inc., produces high-quality suits and sport coats for men. Each suit requires 1.2 hours of cutting time and 0.7 hours of sewing time, uses 6 yards of material, and pro- vides a profit contribution of $190. Each sport coat requires 0.8 hours of cutting time and 0.6 hours of sewing time, uses 4 yards of material, and provides a profit contribution of $150. For the coming week, 200 hours of cutting time, 180 hours of sewing time, and 1200 yards of fabric are available. Additional cutting and sewing time can be obtained by scheduling overtime for these operations. Each hour of overtime for the cutting opera- tion increases the hourly cost by $15, and each hour of overtime for the sewing operation increases the hourly cost by $10. A maximum of 100 hours of overtime can be scheduled. Marketing requirements specify a minimum production of 100 suits and 75 sport coats. Let

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Topic Video
Question

In excel please

6. Tucker, Inc., produces high-quality suits and sport coats for men. Each suit requires
1.2 hours of cutting time and 0.7 hours of sewing time, uses 6 yards of material, and pro-
vides a profit contribution of $190. Each sport coat requires 0.8 hours of cutting time and
0.6 hours of sewing time, uses 4 yards of material, and provides a profit contribution of
$150. For the coming week, 200 hours of cutting time, 180 hours of sewing time, and
1200 yards of fabric are available. Additional cutting and sewing time can be obtained
by scheduling overtime for these operations. Each hour of overtime for the cutting opera-
tion increases the hourly cost by $15, and each hour of overtime for the sewing operation
increases the hourly cost by $10. A maximum of 100 hours of overtime can be scheduled.
Marketing requirements specify a minimum production of 100 suits and 75 sport coats. Let
S = number of suits produced
number of sport coats produced
DI = hours of overtime for the cutting operation
%3D
SC
%3D
D2 = hours of overtime for the sewing operation
%3D
The computer solution is shown in Figure 3.19.
a. What is the optimal solution, and what is the total profit? What is the plan for the use
of overtime?
Transcribed Image Text:6. Tucker, Inc., produces high-quality suits and sport coats for men. Each suit requires 1.2 hours of cutting time and 0.7 hours of sewing time, uses 6 yards of material, and pro- vides a profit contribution of $190. Each sport coat requires 0.8 hours of cutting time and 0.6 hours of sewing time, uses 4 yards of material, and provides a profit contribution of $150. For the coming week, 200 hours of cutting time, 180 hours of sewing time, and 1200 yards of fabric are available. Additional cutting and sewing time can be obtained by scheduling overtime for these operations. Each hour of overtime for the cutting opera- tion increases the hourly cost by $15, and each hour of overtime for the sewing operation increases the hourly cost by $10. A maximum of 100 hours of overtime can be scheduled. Marketing requirements specify a minimum production of 100 suits and 75 sport coats. Let S = number of suits produced number of sport coats produced DI = hours of overtime for the cutting operation %3D SC %3D D2 = hours of overtime for the sewing operation %3D The computer solution is shown in Figure 3.19. a. What is the optimal solution, and what is the total profit? What is the plan for the use of overtime?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Optimization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,