True/False 1) d[f(x) g(x)]/dx= f'(x)/g'(x) 2) d[f(x)]"/dx= n[f(x)] f'(x) and df(x)/dt=(df(x)/dx)•(dx/dt) 3) d[a/dx=a) In(a) 4) d[in f(x)]/dx= f'(x)/f(x) 5) [f(x)" f'(x)dx=[nf(x)] 1)/(n+1) + c.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please let me know which are true or false
Š
True/False
1) d[f(x) g(x)]/dx= f'(x)/g'(x)
2) d[f(x)]"/dx= n[f(x)]^-1 f'(x) and df(x)/dt-(df(x)/dx)-(dx/dt)
3) d[a/dx-a) In(a)
4) d[in f(x)]/dx= f'(x)/f(x)
5) [f(x)" f'(x)dx=[nf(x)]/(n+1)+c.
Transcribed Image Text:Š True/False 1) d[f(x) g(x)]/dx= f'(x)/g'(x) 2) d[f(x)]"/dx= n[f(x)]^-1 f'(x) and df(x)/dt-(df(x)/dx)-(dx/dt) 3) d[a/dx-a) In(a) 4) d[in f(x)]/dx= f'(x)/f(x) 5) [f(x)" f'(x)dx=[nf(x)]/(n+1)+c.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning