Treatment Sham Researchers conducted a study to determine whether magnets are effective in treating back pain. The results are shown in the table for the treatment (with magnets) group and the sham (or placebo) group. The results are a measure of reduction in back pain. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. Complete parts (a) and (b) below. H2 10 10 0.49 0.39 0.65 1.38 U D. TIO: P1- 12 The test statistic, t, is 0.21. (Round to two decimal places as needed.) The P-value is 0.419. (Round to three decimal places as needed.) State the conclusion for the test. Fail to reject the null hypothesis. There is not sufficient evidence to support the claim that those treated with magnets have a greater mean reduction in pain than those given a sham treatment. Is it valid to argue that magnets might appear to be effective if the sample sizes are larger? Since the sample mean for those treated with magnets is greater than the sample mean for those given a sham treatment, it is valid to argue that magnets might appear to be effective if the sample sizes are larger. b. Construct a confidence interval suitable for testing the claim that those treated with magnets have a greater mean reduction in pain than those given a sham treatment. -0.913

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
Treatment
Sham
Researchers conducted a study to determine whether magnets are effective in treating back pain. The results are shown in the table for the
treatment (with magnets) group and the sham (or placebo) group. The results are a measure of reduction in back pain. Assume that the two
samples are independent simple random samples selected from normally distributed populations, and do not assume that the population
standard deviations are equal. Complete parts (a) and (b) below.
H2
In
10
10
0.49
0.39
IS
0.65
1.38
U D. TIO: H1 - H2
H,: H1 > H2
The test statistic, t, is 0.21. (Round to two decimal places as needed.)
The P-value is 0.419 . (Round to three decimal places as needed.)
State the conclusion for the test.
Fail to reject the null hypothesis. There is not sufficient evidence to support the claim that those treated with magnets have a greater mean reduction in pain than
those given a sham treatment.
Is it valid to argue that magnets might appear to be effective if the sample sizes are larger?
Since the
sample mean
for those treated with magnets is greater than the sample mean for those given a sham treatment, it
is
valid to argue
that magnets might appear to be effective if the sample sizes are larger.
b. Construct a confidence interval suitable for testing the claim that those treated with magnets have a greater mean reduction in pain than those given a sham
treatment.
- 0.913 <H1 - H2 < 1.113
(Round to three decimal places as needed.)
Transcribed Image Text:Treatment Sham Researchers conducted a study to determine whether magnets are effective in treating back pain. The results are shown in the table for the treatment (with magnets) group and the sham (or placebo) group. The results are a measure of reduction in back pain. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. Complete parts (a) and (b) below. H2 In 10 10 0.49 0.39 IS 0.65 1.38 U D. TIO: H1 - H2 H,: H1 > H2 The test statistic, t, is 0.21. (Round to two decimal places as needed.) The P-value is 0.419 . (Round to three decimal places as needed.) State the conclusion for the test. Fail to reject the null hypothesis. There is not sufficient evidence to support the claim that those treated with magnets have a greater mean reduction in pain than those given a sham treatment. Is it valid to argue that magnets might appear to be effective if the sample sizes are larger? Since the sample mean for those treated with magnets is greater than the sample mean for those given a sham treatment, it is valid to argue that magnets might appear to be effective if the sample sizes are larger. b. Construct a confidence interval suitable for testing the claim that those treated with magnets have a greater mean reduction in pain than those given a sham treatment. - 0.913 <H1 - H2 < 1.113 (Round to three decimal places as needed.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Hypothesis Tests and Confidence Intervals for Means
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman