Transmission electron microscopes that use highenergy electrons accelerated over a range from 40 to 100 kV are employed in many applications including the study of biological samples (like a virus) and nanoscience research and development (alloy particles and carbon nanotubes, for example). What would be the spatial limitation for this range of electrons? It is often true that resolution is limited by the optics of the lens system, not by the intrinsic limitation due to the de Broglie wavelength.
Transmission electron microscopes that use highenergy electrons accelerated over a range from 40 to 100 kV are employed in many applications including the study of biological samples (like a virus) and nanoscience research and development (alloy particles and carbon nanotubes, for example). What would be the spatial limitation for this range of electrons? It is often true that resolution is limited by the optics of the lens system, not by the intrinsic limitation due to the de Broglie wavelength.
Related questions
Question
Transmission electron microscopes that use highenergy electrons accelerated over a range from 40 to 100 kV are employed in many applications including the study of biological samples (like a virus) and nanoscience research and development (alloy particles and carbon nanotubes, for example). What would be the spatial limitation for this range of electrons? It is often true that resolution is limited by the optics of the lens system, not by the intrinsic limitation due to the de Broglie wavelength.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps