Transfer the following differential equation: y" + 3y" + 2y' —- 5y = t² + e-4t cos t into a system of first order differential equations in the form of x' = A + g(t) What are , A, and ģ(t)? x(t) = = x₁ (t) x₂ (t) x3 (t) x₁ (t) x (t) = x₂(t) _x3 (t) x₁ (t)] x(t) = x₂(t) [x3 (t). x₁ (t) x(t) = | x₂ (t) x3 (t) = = = Y y' = [] " Y y' y' A = " A = " A = --- 0 0 5 1 0 5 1 0 0 1 -2 -3 0 A = 0 -3 1 1 0 1 -2 0 1 0 0 0 1 -5 2 3 -3 1 0 -2 0 1 5 > " 2 g(t) g(t) g(t) 1 = = 0 0 t² + e-4t cos(t). -4t --[ g(t) = 0 0 -4t + e t² cos(t) t² + e cos(t) 0 0 -4t cos(t)]
Transfer the following differential equation: y" + 3y" + 2y' —- 5y = t² + e-4t cos t into a system of first order differential equations in the form of x' = A + g(t) What are , A, and ģ(t)? x(t) = = x₁ (t) x₂ (t) x3 (t) x₁ (t) x (t) = x₂(t) _x3 (t) x₁ (t)] x(t) = x₂(t) [x3 (t). x₁ (t) x(t) = | x₂ (t) x3 (t) = = = Y y' = [] " Y y' y' A = " A = " A = --- 0 0 5 1 0 5 1 0 0 1 -2 -3 0 A = 0 -3 1 1 0 1 -2 0 1 0 0 0 1 -5 2 3 -3 1 0 -2 0 1 5 > " 2 g(t) g(t) g(t) 1 = = 0 0 t² + e-4t cos(t). -4t --[ g(t) = 0 0 -4t + e t² cos(t) t² + e cos(t) 0 0 -4t cos(t)]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,