transfer function of 2/ 8. Figure 9.30 shows an electrical circuit and its block diagram representation. What is the overall transfer function of the system? 9. Use block simplification to arrive at the overall transfer function of the systems shown in Figure 9.31. 10. What is the overall transfer function for the systems shown in Figure 9.32? 11. A closed-loop negative feedback system to be used for controlling the position of a load has a differential amplifier with transfer function K₁ operating a motor with transfer function 1/(sL + R). The output of the motor operates a gear system with gear ratio N and this, in turn, operates a screw with transfer function 1 to give the resulting displacement. The position sensor is a potentiometer and this gives a feedback voltag related to the position of the load by the transfer function K₂. Derive the transfer function for the system a whole, relating the input voltage to the system to the displacement output. 12. A closed-loop negative feedback system for the control of the height of liquid in a tank by pumping liquid from a reservoir tank can be considered to be a system with a differential amplifier having a transfer funct of 5, its output operating a pump with a transfer function 5/(s + 1). The coupled system of tanks has a transfer function, relating height in the tank to the output from the pump, of 3/(s + 1)(s + 2). The feedback sensor of the height level in the tank has a transfer function of 0.1. Determine the overall transfer function the system, relating the input voltage signal to the system to the height of liquid in the tank. 13. For the control system shown in Figure 9.33, determine the output Y(s) in terms of the inputs X₁ (s) and X₂0 14. For the control system shown in Figure 9.34, determine the output Y(s) in terms of the inputs X₁(s) and X₂0 FIGURE 9.30 Problem 8. 0 Input V R с Output VC V (s) Vc(s) DAT R Cs
transfer function of 2/ 8. Figure 9.30 shows an electrical circuit and its block diagram representation. What is the overall transfer function of the system? 9. Use block simplification to arrive at the overall transfer function of the systems shown in Figure 9.31. 10. What is the overall transfer function for the systems shown in Figure 9.32? 11. A closed-loop negative feedback system to be used for controlling the position of a load has a differential amplifier with transfer function K₁ operating a motor with transfer function 1/(sL + R). The output of the motor operates a gear system with gear ratio N and this, in turn, operates a screw with transfer function 1 to give the resulting displacement. The position sensor is a potentiometer and this gives a feedback voltag related to the position of the load by the transfer function K₂. Derive the transfer function for the system a whole, relating the input voltage to the system to the displacement output. 12. A closed-loop negative feedback system for the control of the height of liquid in a tank by pumping liquid from a reservoir tank can be considered to be a system with a differential amplifier having a transfer funct of 5, its output operating a pump with a transfer function 5/(s + 1). The coupled system of tanks has a transfer function, relating height in the tank to the output from the pump, of 3/(s + 1)(s + 2). The feedback sensor of the height level in the tank has a transfer function of 0.1. Determine the overall transfer function the system, relating the input voltage signal to the system to the height of liquid in the tank. 13. For the control system shown in Figure 9.33, determine the output Y(s) in terms of the inputs X₁ (s) and X₂0 14. For the control system shown in Figure 9.34, determine the output Y(s) in terms of the inputs X₁(s) and X₂0 FIGURE 9.30 Problem 8. 0 Input V R с Output VC V (s) Vc(s) DAT R Cs
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Number 8
Expert Solution
Step 1
8.Answer; given that a RC circuit and its block diagram
To find the overall transfer function of given bock diagram
V(s) - input to the system
VC(s)- output of the system
T(s) - overall transfer function =
Step by step
Solved in 2 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,