TRANSCRIBE THE FOLLOWING TEXT IN DIGITAL FORMAT

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

TRANSCRIBE THE FOLLOWING TEXT IN DIGITAL FORMAT

Given that, flt) = 3 tv - 4 Sin (54)
we have to determine
of f(t).
We know that
where F(S) = 2√ {f(t)}.
in dn
4 { +^+1+1} = (-1)" d² [ F10]
we know that ↳ { Sincatl} = a ar
Again
а
Šta
L {e^² + f(t)} = F(S-a) where F(S) = 2 {f(t)}
L {f(t)} i.e. Laplace transformation
=
. Now, flt) = 3+²-4 Sin (5+)
2². W { f(t)} = 2 { 3+²-4 Sin(st)}
L
JI
-
11
= 3 4 5 (- ==- ) -
ds
= 3x -
L {3+~} - [{ 4 Sin (5+)}
3 ⋅ (-1) 1/2²/24 (-1/2) - 4. 5
_. & {f(+)} =
2
(5-3)3
3x-2²7
S3
:. 4 { @²+ + ² }
...
e
6
$3
-
او
53
20
5+25
ww/ro
and
20
5+25
Now, w{tr} = Hiju da 2 (3)
L
d2
वडर
ds (sv)
3t
Therefore { e³² tv} =
[2√ e³t+~}
4x5
5+25
20
5+25
5+5²
2
(5-3)³
Transcribed Image Text:Given that, flt) = 3 tv - 4 Sin (54) we have to determine of f(t). We know that where F(S) = 2√ {f(t)}. in dn 4 { +^+1+1} = (-1)" d² [ F10] we know that ↳ { Sincatl} = a ar Again а Šta L {e^² + f(t)} = F(S-a) where F(S) = 2 {f(t)} L {f(t)} i.e. Laplace transformation = . Now, flt) = 3+²-4 Sin (5+) 2². W { f(t)} = 2 { 3+²-4 Sin(st)} L JI - 11 = 3 4 5 (- ==- ) - ds = 3x - L {3+~} - [{ 4 Sin (5+)} 3 ⋅ (-1) 1/2²/24 (-1/2) - 4. 5 _. & {f(+)} = 2 (5-3)3 3x-2²7 S3 :. 4 { @²+ + ² } ... e 6 $3 - او 53 20 5+25 ww/ro and 20 5+25 Now, w{tr} = Hiju da 2 (3) L d2 वडर ds (sv) 3t Therefore { e³² tv} = [2√ e³t+~} 4x5 5+25 20 5+25 5+5² 2 (5-3)³
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,