TRANSCRIBE THE FOLLOWING TEXT IN DI

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

TRANSCRIBE THE FOLLOWING TEXT IN DIGITAL FORMAT

Solution :
we
介
consider the given
the given function
x² + 2xy -
find
介
can
Differentiate 0
with
elespect to "x",
d [x² + 2xy = cos(x + y²)] = ₁ (8)
1
-
dx
dx
hp Xe
2x + 2x
807
dy.
dx
_d_ (x²) + d (2xg) _ _d_ (mas (m²)) =
(008
dx
dx
dx
(x+y2)=8
dy
dx
--0
хр
we have
2x + 2 [x. dy + y dx ] - (-ain (x+y²). A = (x+²) = 0
d
dx
dx
: + 2x dy + 2y + x³m (x + y²) [ 1+ 2y. d)]
xin
dx
dx
•: d (c)
=0;
whoa c'- constant
+ 2y + 2 in (x+y ²) + 2y sin (x+y²) dy
[2x+2y + sin(x+y²)] + [³x + 2y ain (x+y²³)
³y
The
2x+ 2y + sin (x+y²)
2x + ³y sin (x+y²)
dx
[2x + 2y sin (x+y²)) = = = (2x +2y + xin (x+3))
dy
dx
=0.
)
Transcribed Image Text:Solution : we 介 consider the given the given function x² + 2xy - find 介 can Differentiate 0 with elespect to "x", d [x² + 2xy = cos(x + y²)] = ₁ (8) 1 - dx dx hp Xe 2x + 2x 807 dy. dx _d_ (x²) + d (2xg) _ _d_ (mas (m²)) = (008 dx dx dx (x+y2)=8 dy dx --0 хр we have 2x + 2 [x. dy + y dx ] - (-ain (x+y²). A = (x+²) = 0 d dx dx : + 2x dy + 2y + x³m (x + y²) [ 1+ 2y. d)] xin dx dx •: d (c) =0; whoa c'- constant + 2y + 2 in (x+y ²) + 2y sin (x+y²) dy [2x+2y + sin(x+y²)] + [³x + 2y ain (x+y²³) ³y The 2x+ 2y + sin (x+y²) 2x + ³y sin (x+y²) dx [2x + 2y sin (x+y²)) = = = (2x +2y + xin (x+3)) dy dx =0. )
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,