Traffic flow on a section of a two-lane highway can be described by the Greenshields model, with a mean free speed of 55 mi/h and a jam density of 145 veh/mi/ln. At the time when the flow was 90% of the capacity of the highway, a large dump truck loaded with heavy industrial machinery from an adjacent construction site joins the traffic stream and travels at a speed of 15 mi/h for a length of 3.5 mi along the upgrade before turning off onto a dump site. Due to the relatively high flow in the opposite direction, it is impossible for any car to pass the truck. Determine how many vehicles will be in the platoon behind the truck by the time the truck leaves the highway
Traffic flow on a section of a two-lane highway can be described by the Greenshields model, with a mean free speed of 55 mi/h and a jam density of 145 veh/mi/ln. At the time when the flow was 90% of the capacity of the highway, a large dump truck loaded with heavy industrial machinery from an adjacent construction site joins the traffic stream and travels at a speed of 15 mi/h for a length of 3.5 mi along the upgrade before turning off onto a dump site. Due to the relatively high flow in the opposite direction, it is impossible for any car to pass the truck. Determine how many vehicles will be in the platoon behind the truck by the time the truck leaves the highway
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Please solve, Transportion engineering

Transcribed Image Text:Traffic flow on a section of a two-lane highway can be described by the
Greenshields model, with a mean free speed of 55 mi/h and a jam density of 145
veh/mi/ln. At the time when the flow was 90% of the capacity of the highway, a
large dump truck loaded with heavy industrial machinery from an adjacent
construction site joins the traffic stream and travels at a speed of 15 mi/h for a
length of 3.5 mi along the upgrade before turning off onto a dump site. Due to the
relatively high flow in the opposite direction, it is impossible for any car to pass
the truck. Determine how many vehicles will be in the platoon behind the truck by
the time the truck leaves the highway
Expert Solution

Step 1
Following are the given data.
The mean free speed,
The jam density,
Trending now
This is a popular solution!
Step by step
Solved in 6 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning