To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times. The equation of motion for a particle of mass m can be written as ∑F=ma=mdvdt By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum: ∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1 For problem-solving purposes, this principle is often rewritten as mv1+∑∫t2t1Fdt=mv2 The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum.   A stop block, s, prevents a crate from sliding down a θ = 20.0 ∘ incline. (Figure 1) A tensile force F=(F0t) N acts on the crate parallel to the incline, where F0 = 265 N/s . If the coefficients of static and kinetic friction between the crate and the incline are μs = 0.290 and μk = 0.195, respectively, and the crate has a mass of 57.4 kg , how long will it take until the crate reaches a velocity of 3.01 m/s as it moves up the incline?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times.

The equation of motion for a particle of mass m

can be written as

F=ma=mdvdt

By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum:

∑∫t2t1Fdt=mv2v1dv=mv2−mv1

For problem-solving purposes, this principle is often rewritten as

mv1+∑∫t2t1Fdt=mv2

The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum.

 

A stop block, s, prevents a crate from sliding down a θ = 20.0 ∘ incline. (Figure 1) A tensile force F=(F0t) N acts on the crate parallel to the incline, where F0 = 265 N/s . If the coefficients of static and kinetic friction between the crate and the incline are μs = 0.290 and μk = 0.195, respectively, and the crate has a mass of 57.4 kg , how long will it take until the crate reaches a velocity of 3.01 m/s as it moves up the incline?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY