to solve the question please use the equations below.  - a mass M moving with a velocity V1i collides with mass 2M moving with a velocity V2i. After the collision the first mass has a velocity V1f. make a diagram of the initial momemtub vectors and final momentum vectors in a (x,y) plane. determine the final velocity of the second mass in (I J K) notation. determine the final velocity of the second mass in terms of speed and angle. V1i=12 i -5J     V2i= -3i +2J     V1f= 8i +7J

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question

to solve the question please use the equations below. 

- a mass M moving with a velocity V1i collides with mass 2M moving with a velocity V2i. After the collision the first mass has a velocity V1f.

make a diagram of the initial momemtub vectors and final momentum vectors in a (x,y) plane.

determine the final velocity of the second mass in (I J K) notation.

determine the final velocity of the second mass in terms of speed and angle.

V1i=12 i -5J     V2i= -3i +2J     V1f= 8i +7J

**Physics Formulas and Concepts**

**Rotational Motion:**
- \( \theta = s/r \)
- \( \omega = v/r \)
- \( \alpha = a_t/r \)
- \( a_c = \omega^2r \)

Equations of motion:
- \( \omega = \omega_0 + \alpha t \)
- \( \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \)
- \( \omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0) \)

**Conditions of Static Equilibrium:**
- \( \Sigma F_x = 0 \)
- \( \Sigma F_y = 0 \)
- \( \Sigma T_{\text{cw}} = \Sigma T_{\text{ccw}} \)

**Vibrational Motion:**
- \( T = \frac{1}{f} \)
- \( \omega = 2 \pi f \)
- \( \omega = \sqrt{k/m} \)

Displacement, velocity, and acceleration in SHM:
- \( x(t) = A \cos (\omega t + \phi) \)
- \( v(t) = -A \omega \sin (\omega t + \phi) \)
- \( a(t) = -A \omega^2 \cos (\omega t + \phi) \)

Max values:
- \( v_{\text{max}} = A \omega \)
- \( a_{\text{max}} = A \omega^2 \)
- \( F_{\text{max}} = m A \omega^2 \)

**Waves:**
- \( v = f \lambda \)
- \( v = \sqrt{T/\mu} \), \( \mu \) = mass/length
- \( f_n = n f_0 \)
- \( l_n = 2L/n \)

**Calorimetry:**
- \( q = mc \Delta T \) or \( q = \Delta H m \)

**Ideal Gas Law:**
- \( PV = nRT \)
- \( R = 8.314 \, \text{L-kPa/mol-K} \)

**Moment of Inertia:**
- For a ring: \( I = MR^2 \)
- For a disc: \( I = \
Transcribed Image Text:**Physics Formulas and Concepts** **Rotational Motion:** - \( \theta = s/r \) - \( \omega = v/r \) - \( \alpha = a_t/r \) - \( a_c = \omega^2r \) Equations of motion: - \( \omega = \omega_0 + \alpha t \) - \( \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \) - \( \omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0) \) **Conditions of Static Equilibrium:** - \( \Sigma F_x = 0 \) - \( \Sigma F_y = 0 \) - \( \Sigma T_{\text{cw}} = \Sigma T_{\text{ccw}} \) **Vibrational Motion:** - \( T = \frac{1}{f} \) - \( \omega = 2 \pi f \) - \( \omega = \sqrt{k/m} \) Displacement, velocity, and acceleration in SHM: - \( x(t) = A \cos (\omega t + \phi) \) - \( v(t) = -A \omega \sin (\omega t + \phi) \) - \( a(t) = -A \omega^2 \cos (\omega t + \phi) \) Max values: - \( v_{\text{max}} = A \omega \) - \( a_{\text{max}} = A \omega^2 \) - \( F_{\text{max}} = m A \omega^2 \) **Waves:** - \( v = f \lambda \) - \( v = \sqrt{T/\mu} \), \( \mu \) = mass/length - \( f_n = n f_0 \) - \( l_n = 2L/n \) **Calorimetry:** - \( q = mc \Delta T \) or \( q = \Delta H m \) **Ideal Gas Law:** - \( PV = nRT \) - \( R = 8.314 \, \text{L-kPa/mol-K} \) **Moment of Inertia:** - For a ring: \( I = MR^2 \) - For a disc: \( I = \
### Physics Formulas and Concepts

#### Angles and Vector Components
- **180 degrees = π radians**
- **Vector components:**
  - \( V_x = V \cos \theta \)
  - \( V_y = V \sin \theta \)
  - \( V_x^2 + V_y^2 = V^2 \)
  - \( \tan \theta = \frac{V_y}{V_x} \)

#### Constant Acceleration Conditions
- \( v = v_0 + at \)
- \( d = d_0 + v_0 t + \frac{1}{2} at^2 \)
- \( v^2 = v_0^2 + 2a(d-d_0) \)
- **Use \( g = 10 \, \text{m/s}^2 \)**

#### Newton's Second Law of Motion
- \( \Sigma F = ma \)

#### Forces and Energy
- **Gravitational force, or weight:** \( F_g = mg \)
- **Frictional force:** \( F_f = \mu N \)
- **Hooke’s law:** \( F = -kx \)
- **Centripetal force:** \( F_c = \frac{mv^2}{r} \)

#### Conservation of Energy
- \( \Sigma E_i + W = \Sigma E_f \)

#### Work and Energy
- **Work:** \( W = F \Delta d \cos \theta \)
- **Gravitational potential energy:** \( U_g = mgh \)
- **Spring potential energy:** \( U_s = \frac{1}{2} kx^2 \)
- **Kinetic energy:** \( KE = \frac{1}{2} mv^2 \) or \( \frac{1}{2} I \omega^2 \)

#### Impulse and Momentum
- **Impulse:** \( J = F \Delta t \)
- **Momentum:** \( p = mv \)
- **Momentum conservation:** \( \Sigma p_i + J = \Sigma p_f \)

#### Angular Motion
- **Torque:** \( T = I \alpha = Fr \sin \theta \)
- **Moment of inertia:** \( I = \Sigma mr^2 \)

These equations are fundamental in understanding the principles of physics and are used to calculate various physical quantities.
Transcribed Image Text:### Physics Formulas and Concepts #### Angles and Vector Components - **180 degrees = π radians** - **Vector components:** - \( V_x = V \cos \theta \) - \( V_y = V \sin \theta \) - \( V_x^2 + V_y^2 = V^2 \) - \( \tan \theta = \frac{V_y}{V_x} \) #### Constant Acceleration Conditions - \( v = v_0 + at \) - \( d = d_0 + v_0 t + \frac{1}{2} at^2 \) - \( v^2 = v_0^2 + 2a(d-d_0) \) - **Use \( g = 10 \, \text{m/s}^2 \)** #### Newton's Second Law of Motion - \( \Sigma F = ma \) #### Forces and Energy - **Gravitational force, or weight:** \( F_g = mg \) - **Frictional force:** \( F_f = \mu N \) - **Hooke’s law:** \( F = -kx \) - **Centripetal force:** \( F_c = \frac{mv^2}{r} \) #### Conservation of Energy - \( \Sigma E_i + W = \Sigma E_f \) #### Work and Energy - **Work:** \( W = F \Delta d \cos \theta \) - **Gravitational potential energy:** \( U_g = mgh \) - **Spring potential energy:** \( U_s = \frac{1}{2} kx^2 \) - **Kinetic energy:** \( KE = \frac{1}{2} mv^2 \) or \( \frac{1}{2} I \omega^2 \) #### Impulse and Momentum - **Impulse:** \( J = F \Delta t \) - **Momentum:** \( p = mv \) - **Momentum conservation:** \( \Sigma p_i + J = \Sigma p_f \) #### Angular Motion - **Torque:** \( T = I \alpha = Fr \sin \theta \) - **Moment of inertia:** \( I = \Sigma mr^2 \) These equations are fundamental in understanding the principles of physics and are used to calculate various physical quantities.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON