To maximize production and minimize pumping costs, crude oil is heated to reduce its viscosity during transportation from a production field. (1) Consider a pipe-in-pipe configuration consisting of concentric steel tubes with an intervening insulating material. The inner tube is used to transport warm crude oil through cold ocean water. The inner steel pipe (ks= 40 W/m·K) has an inside diameter of Di, 1= 150 mm and wall thickness ti= 20 mm while the outer steel pipe has an inside diameter of Di, 2= 250 mm and wall thickness to=ti. Determine the maximum allowable crude oil temperature to ensure the polyurethane foam insulation (kp= 0.0675 W/m·K) between the two pipes does not exceed its maximum service temperature of Tp, max= 70°C. The ocean water is at ∞ T∞, o= -5°C and provides an external convection heat transfer coefficient of ho= 500 W/m2·K. The convection coefficient associated with the flowing crude oil is hi= 450 W/m2·K. (2) It is proposed to enhance the performance of the pipe-in-pipe device by replacing a thin (ta= 10 mm) section of polyurethane located at the outside of the inner pipe with an aerogel insulation material (ka= 0.012 W/m·K). Determine the maximum allowable crude oil temperature to ensure maximum polyurethane temperatures are below Tp, max= 70°C. a. Determine the maximum crude oil temperature if aerogel is used, in °C.
To maximize production and minimize pumping costs, crude oil is heated to reduce its viscosity during transportation from a production field. (1) Consider a pipe-in-pipe configuration consisting of concentric steel tubes with an intervening insulating material. The inner tube is used to transport warm crude oil through cold ocean water. The inner steel pipe (ks= 40 W/m·K) has an inside diameter of Di, 1= 150 mm and wall thickness ti= 20 mm while the outer steel pipe has an inside diameter of Di, 2= 250 mm and wall thickness to=ti. Determine the maximum allowable crude oil temperature to ensure the polyurethane foam insulation (kp= 0.0675 W/m·K) between the two pipes does not exceed its maximum service temperature of Tp, max= 70°C. The ocean water is at ∞ T∞, o= -5°C and provides an external convection heat transfer coefficient of ho= 500 W/m2·K. The convection coefficient associated with the flowing crude oil is hi= 450 W/m2·K. (2) It is proposed to enhance the performance of the pipe-in-pipe device by replacing a thin (ta= 10 mm) section of polyurethane located at the outside of the inner pipe with an aerogel insulation material (ka= 0.012 W/m·K). Determine the maximum allowable crude oil temperature to ensure maximum polyurethane temperatures are below Tp, max= 70°C. a. Determine the maximum crude oil temperature if aerogel is used, in °C.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
To maximize production and minimize pumping costs, crude oil is heated to reduce its viscosity during transportation from a production field.
(1) Consider a pipe-in-pipe configuration consisting of concentric steel tubes with an intervening insulating material. The inner tube is used to transport warm crude oil through cold ocean water. The inner steel pipe (ks= 40 W/m·K) has an inside diameter of Di, 1= 150 mm and wall thickness ti= 20 mm while the outer steel pipe has an inside diameter of Di, 2= 250 mm and wall thickness to=ti. Determine the maximum allowable crude oil temperature to ensure the polyurethane foam insulation (kp= 0.0675 W/m·K) between the two pipes does not exceed its maximum service temperature of Tp, max= 70°C. The ocean water is at ∞ T∞, o= -5°C and provides an external convection heat transfer coefficient of ho= 500 W/m2·K. The convection coefficient associated with the flowing crude oil is hi= 450 W/m2·K.
(2) It is proposed to enhance the performance of the pipe-in-pipe device by replacing a thin (ta= 10 mm) section of polyurethane located at the outside of the inner pipe with an aerogel insulation material (ka= 0.012 W/m·K). Determine the maximum allowable crude oil temperature to ensure maximum polyurethane temperatures are below Tp, max= 70°C.
a. Determine the maximum crude oil temperature if aerogel is used, in °C.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY