To increase the velocity of the air flowing through the trachea when a human coughs, the body contracts the windpipe, producing a more effective cough. Tuchinsky formulated that the velocity of air that is flowing through the trachea during a cough isV = C(R0 - R)R2,where C is a constant based on individual body characteristics, R0 is the radius of the windpipe before the cough, and R is the radius of the windpipe during the cough. It can be shown that the maximum velocity of the cough occurs when dV/dR = 0. Find the value of R that maximizes the velocity.* Source: COMAP, Inc.
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
To increase the velocity of the air flowing through the trachea when a human coughs, the body contracts the windpipe, producing a more effective cough. Tuchinsky formulated that the velocity of air that is flowing through the trachea during a cough is
V = C(R0 - R)R2,
where C is a constant based on individual body characteristics, R0 is the radius of the windpipe before the cough, and R is the radius of the windpipe during the cough. It can be shown that the maximum velocity of the cough occurs when dV/dR = 0. Find the value of R that maximizes the velocity.* Source: COMAP, Inc.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images