To illustrate the Mean Value Theorem with a specific function, let's consider f(x) = x3 - x, a = 0, b = 8. Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on [0, 8] and differentiable on (0, 8). Therefore, by the Mean Value Theorem, there is a number c in (0, 8) such that f(8) f(0) = f'(c)(8-0). Now f(8) 504 f(0) = 0 , and f'(x) = 3n² - 1 , so this equation becomes 7 = f'(c)(8) = 0 (8) - 504 which gives c2 21.33 , that is, c = ± 4:6188 . But c must be in (0, 8), so c = 4.62 The following figure illustrates the calculation that the tangent line at this value of c is parallel to the secant line. 700 600 500 400 300 200 100 8 Ⓡ
To illustrate the Mean Value Theorem with a specific function, let's consider f(x) = x3 - x, a = 0, b = 8. Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on [0, 8] and differentiable on (0, 8). Therefore, by the Mean Value Theorem, there is a number c in (0, 8) such that f(8) f(0) = f'(c)(8-0). Now f(8) 504 f(0) = 0 , and f'(x) = 3n² - 1 , so this equation becomes 7 = f'(c)(8) = 0 (8) - 504 which gives c2 21.33 , that is, c = ± 4:6188 . But c must be in (0, 8), so c = 4.62 The following figure illustrates the calculation that the tangent line at this value of c is parallel to the secant line. 700 600 500 400 300 200 100 8 Ⓡ
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,