To find the definite integral x³dx by the limit definition, divide the interval [-6, 6] into n subintervals. Then the width of each interval is b-a Ax = = 6 - (-6) 6+6 Note that ||A|| → 0 x³dx = n = = n Step 2 Choose c; as the right endpoint of each subinterval. Then C₁ = a + i(Ax) So the definite integral is given by = n→ 12 0 as n→ ∞0. n lim Σ f(c₁) Ax; ||A||→ 07 i = 1 lim n→ ∞ n n→ lim n→ ∞o = lim n→∞o n→ lim n→∞0 n -£(- i=1 lim i = 1 i = 1 -6 + lim + -216 + -2592 + lim + 12) (1²2) / = 1 n Σf(c) Axi i = 1 + ;2+ 2+ n n -2592 + 20736 n n n n² £³] 7 = 1 ](¹+ ²¹² ) 1 ¹¹) (¹²) n Σ i=1 + 17/1/2) + n³ 1 + n n ++/-)]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Step 1**

To find the definite integral \(\int_{-6}^{6} x^3 \, dx\) by the limit definition, divide the interval \([-6, 6]\) into \(n\) subintervals.

The width of each interval is
\[
\Delta x = \frac{b-a}{n} = \frac{6 - (-6)}{n} = \frac{6 + 6}{n} = \frac{12}{n}
\]

Note that \(\|\Delta\| \to 0\) as \(n \to \infty\).

**Step 2**

Choose \(c_i\) as the right endpoint of each subinterval. Then 
\[
c_i = a + i(\Delta x) = -6 + \frac{12i}{n}
\]

So the definite integral is given by 
\[
\int_{-6}^{6} x^3 \, dx = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i 
\]

\[
= \lim_{n \to \infty} \sum_{i=1}^{n} \left(-6 + \frac{12i}{n}\right)^3 \left(\frac{12}{n}\right)
\]

\[
= \lim_{n \to \infty} \sum_{i=1}^{n} \left(-6 + \frac{12i}{n}\right)^3 \left(\frac{12}{n}\right) 
\]

\[
= \lim_{n \to \infty} \sum_{i=1}^{n} \left(-216 + \frac{1296i}{n} - \frac{432i^2}{n^2} + \frac{64i^3}{n^3}\right)\left(\frac{12}{n}\right)
\]

\[
= \lim_{n \to \infty} \left[-2592 + \frac{15552}{n^2}\sum_{i=1}^{n} i - \frac{5184}{n^3}\sum_{i=1}^{n} i
Transcribed Image Text:**Step 1** To find the definite integral \(\int_{-6}^{6} x^3 \, dx\) by the limit definition, divide the interval \([-6, 6]\) into \(n\) subintervals. The width of each interval is \[ \Delta x = \frac{b-a}{n} = \frac{6 - (-6)}{n} = \frac{6 + 6}{n} = \frac{12}{n} \] Note that \(\|\Delta\| \to 0\) as \(n \to \infty\). **Step 2** Choose \(c_i\) as the right endpoint of each subinterval. Then \[ c_i = a + i(\Delta x) = -6 + \frac{12i}{n} \] So the definite integral is given by \[ \int_{-6}^{6} x^3 \, dx = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i \] \[ = \lim_{n \to \infty} \sum_{i=1}^{n} \left(-6 + \frac{12i}{n}\right)^3 \left(\frac{12}{n}\right) \] \[ = \lim_{n \to \infty} \sum_{i=1}^{n} \left(-6 + \frac{12i}{n}\right)^3 \left(\frac{12}{n}\right) \] \[ = \lim_{n \to \infty} \sum_{i=1}^{n} \left(-216 + \frac{1296i}{n} - \frac{432i^2}{n^2} + \frac{64i^3}{n^3}\right)\left(\frac{12}{n}\right) \] \[ = \lim_{n \to \infty} \left[-2592 + \frac{15552}{n^2}\sum_{i=1}^{n} i - \frac{5184}{n^3}\sum_{i=1}^{n} i
Expert Solution
Step 1: Determination of given information

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,