To find the definite integral x³dx by the limit definition, divide the interval [-6, 6] into n subintervals. Then the width of each interval is b-a Ax = = 6 - (-6) 6+6 Note that ||A|| → 0 x³dx = n = = n Step 2 Choose c; as the right endpoint of each subinterval. Then C₁ = a + i(Ax) So the definite integral is given by = n→ 12 0 as n→ ∞0. n lim Σ f(c₁) Ax; ||A||→ 07 i = 1 lim n→ ∞ n n→ lim n→ ∞o = lim n→∞o n→ lim n→∞0 n -£(- i=1 lim i = 1 i = 1 -6 + lim + -216 + -2592 + lim + 12) (1²2) / = 1 n Σf(c) Axi i = 1 + ;2+ 2+ n n -2592 + 20736 n n n n² £³] 7 = 1 ](¹+ ²¹² ) 1 ¹¹) (¹²) n Σ i=1 + 17/1/2) + n³ 1 + n n ++/-)]
To find the definite integral x³dx by the limit definition, divide the interval [-6, 6] into n subintervals. Then the width of each interval is b-a Ax = = 6 - (-6) 6+6 Note that ||A|| → 0 x³dx = n = = n Step 2 Choose c; as the right endpoint of each subinterval. Then C₁ = a + i(Ax) So the definite integral is given by = n→ 12 0 as n→ ∞0. n lim Σ f(c₁) Ax; ||A||→ 07 i = 1 lim n→ ∞ n n→ lim n→ ∞o = lim n→∞o n→ lim n→∞0 n -£(- i=1 lim i = 1 i = 1 -6 + lim + -216 + -2592 + lim + 12) (1²2) / = 1 n Σf(c) Axi i = 1 + ;2+ 2+ n n -2592 + 20736 n n n n² £³] 7 = 1 ](¹+ ²¹² ) 1 ¹¹) (¹²) n Σ i=1 + 17/1/2) + n³ 1 + n n ++/-)]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
Step 1: Determination of given information
Step by step
Solved in 3 steps with 4 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,