To find each product, we will multiply each term of the polynomial by the monomial. We use the distributive property to multiply a monomial and a polynomial. (a) Multiply each term of 3a2 За?(За?- 5а + 2) - 5a + 2 by 3a?. За? (За?) + За?(-5а) + За?(2) = 9aU- 15a3 +Oa? Distribute the multiplication by 3a2 Multiply the monomials. (b) Multiply each term of 6x³z + x²z² – xz³ + 7zª by -2xz³. -2xz (6x3z + x?z2 – xz³ + 7z*) - -2xz°(Ox³2) – 2xz°(x²z?) – 2xz°(-xz³) – 2xz°(Oz4) OX4A - 2x°z5 + 2x²z6 – D xz7 Multiply the monomials. (c) Multiply each term of -m4 – 25 by 4m3. (-mª – 25)(4m³) = -m*(4m³) –O (4m³) -Om? -Om3 Distribute the multiplication by 4m³. Multiply the monomials. Multiply: (a) 5c2(2c4 – 8c – 4) and (b) -s?t?(-s©rª + s$t5 – st6 + 4s) (a) (b)

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
### Polynomial Multiplication Using the Distributive Property

To find each product, we will multiply each term of the polynomial by the monomial.

We use the distributive property to multiply a monomial and a polynomial.

#### (a) Multiply \(3a^2(3a^2 - 5a + 2)\):

\[3a^2(3a^2 - 5a + 2)\]

1. **Distribute the multiplication by \(3a^2\)**:
   \[= 3a^2(3a^2) + 3a^2(-5a) + 3a^2(2)\]

2. **Multiply the monomials**:
   \[= 9a^4 - 15a^3 + 6a^2\]

#### (b) Multiply \(-2xz^3(6x^3z + x^2z^2 - xz^3 + 7z^4)\):

\(-2xz^3(6x^3z + x^2z^2 - xz^3 + 7z^4)\)

1. **Distribute the multiplication by \(-2xz^3\)**:
   \[= -2xz^3(6x^3z) + -2xz^3(x^2z^2) + -2xz^3(-xz^3) + -2xz^3(7z^4)\]

2. **Multiply the monomials**:
   \[= -12x^4z^4 - 2x^3z^5 + 2x^2z^6 - 14xz^7\]

#### (c) Multiply each term of \((-m^4 - 25)\) by \(4m^3\):

\((-m^4 - 25)(4m^3)\)

1. **Distribute the multiplication by \(4m^3\)**:
   \[= -m^4(4m^3) - 25(4m^3)\]

2. **Multiply the monomials**:
   \[= -4m^7 - 100m^3\]

#### Practice Problems:

1. Multiply \(5c^2(2c^4 - 8c - 4)\):
   \[
   \text{Answer
Transcribed Image Text:### Polynomial Multiplication Using the Distributive Property To find each product, we will multiply each term of the polynomial by the monomial. We use the distributive property to multiply a monomial and a polynomial. #### (a) Multiply \(3a^2(3a^2 - 5a + 2)\): \[3a^2(3a^2 - 5a + 2)\] 1. **Distribute the multiplication by \(3a^2\)**: \[= 3a^2(3a^2) + 3a^2(-5a) + 3a^2(2)\] 2. **Multiply the monomials**: \[= 9a^4 - 15a^3 + 6a^2\] #### (b) Multiply \(-2xz^3(6x^3z + x^2z^2 - xz^3 + 7z^4)\): \(-2xz^3(6x^3z + x^2z^2 - xz^3 + 7z^4)\) 1. **Distribute the multiplication by \(-2xz^3\)**: \[= -2xz^3(6x^3z) + -2xz^3(x^2z^2) + -2xz^3(-xz^3) + -2xz^3(7z^4)\] 2. **Multiply the monomials**: \[= -12x^4z^4 - 2x^3z^5 + 2x^2z^6 - 14xz^7\] #### (c) Multiply each term of \((-m^4 - 25)\) by \(4m^3\): \((-m^4 - 25)(4m^3)\) 1. **Distribute the multiplication by \(4m^3\)**: \[= -m^4(4m^3) - 25(4m^3)\] 2. **Multiply the monomials**: \[= -4m^7 - 100m^3\] #### Practice Problems: 1. Multiply \(5c^2(2c^4 - 8c - 4)\): \[ \text{Answer
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Polynomial
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education