To derive finite difference formulas and compute their errors we usually use Taylor's expansions. The error in the finite difference approximation f'(x) [4f(x+h)-3f(x)-f(x+2h)] is O a. 1 -h²f"'' (5) 6 Ob. 1 h²f"(5) OC 1 h²f" (5) 3 O d. 1 1/2 h²f (4) (5) 2h

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please help answer this question

QUESTION 7
1
To derive finite difference formulas and compute their errors we usually use Taylor's expansions. The error in the finite difference approximation f'(x) ~—- −[4ƒ (x+ h) − 3f (x) − f (x+2h) ] is
2h
a. 1
·h²ƒ''' (§)
6
b. 1
-h²ƒ'' (5)
3
C. 1
d.
·h²ƒ ''' (§)
3
1
-h²f (4) (§)
12
Transcribed Image Text:QUESTION 7 1 To derive finite difference formulas and compute their errors we usually use Taylor's expansions. The error in the finite difference approximation f'(x) ~—- −[4ƒ (x+ h) − 3f (x) − f (x+2h) ] is 2h a. 1 ·h²ƒ''' (§) 6 b. 1 -h²ƒ'' (5) 3 C. 1 d. ·h²ƒ ''' (§) 3 1 -h²f (4) (§) 12
Expert Solution
Step 1: Finding the Taylor series expansion

The Taylor series expansion of fx+h is i=0n-1hii!fix

fx+h=fx+hf'x+h22!f"x+....+hn-1n-1!+Rnfx+2h=fx+2hf'x+2h22!f"x+....+hn-1n-1!+Rn

Now 

4fx+h-3fx-fx+2h=4fx+hf'x+h22!f"x+h33!f'''x...-3fx-fx+2hf'x+2h22!f"x+2h33!f'''x=4fx+4hf'x+2h2f"x+2h33f'''x-3fx-fx-2hf'x-2h2f"x-4h33f'''x=2hf'x-2h33f'''x+...  

Given 

f'x12h4fx+h-3fx-fx+2h

12h4fx+h-3fx-fx+2h=12h2hf'x-2h33f'''x+...                                                              =f'x-13h2f'''x+....f'x-12h4fx+h-3fx-fx+2h13h2f'''x

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,