t<5 7. g(t) = |(t-5)² t25

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Find the Laplace transform of each of the following functions and simplify the result. Problem no. 7 only. Thanks!
Exercises
Find the Laplace transform of each of the following functions and simplify the result.
2a
F(s) =
1. f(t) = 2(1–e")
s(S+a)
(6s – 48)
F(s) =
s? +4s +40
2. f(t) = 2eª(3cos6t – 5sin6t)
12
F(s) =
(s+4)*
%3D
3. f(t) = 2t'e"
2e %
F(s) =
(s+3)%
4. f(t) =
Го
4
et-3)
-3s
t<3
G(s) =
(s-1)
5. g(t) =
t23
cos 2 t- t2
se
G(s) =
(s² + 4)
6. g(t) :
4e 6*
G(s) =
t<5
t25
7. g(t) = [(t-5)²
(s-2)
G(s) =
(s- 2)² +1 (s-2)² + 49_
(s-2)
8. g(t) = 2e"sin4tsin3t
3e% sin3tsinh 7t
4.5
4.5
H(s) =
(s – 6.5)² +9 (s+7.5)² +9
j2
H(s) =
s(s- 4)
9. h(t) =
10. h(t) = e"sinj2t
Product Identities
sin(A +B)+ sin(A –B)
sinA cosB
1.
sin(A +B)- sin(A -B)
cos A sinB
2.
cos(A -B)+ cos(A+B)
cos A cosB:
3.
2
cos(A -B)- cos(A+B)
sinA sinB
4.
Transcribed Image Text:Exercises Find the Laplace transform of each of the following functions and simplify the result. 2a F(s) = 1. f(t) = 2(1–e") s(S+a) (6s – 48) F(s) = s? +4s +40 2. f(t) = 2eª(3cos6t – 5sin6t) 12 F(s) = (s+4)* %3D 3. f(t) = 2t'e" 2e % F(s) = (s+3)% 4. f(t) = Го 4 et-3) -3s t<3 G(s) = (s-1) 5. g(t) = t23 cos 2 t- t2 se G(s) = (s² + 4) 6. g(t) : 4e 6* G(s) = t<5 t25 7. g(t) = [(t-5)² (s-2) G(s) = (s- 2)² +1 (s-2)² + 49_ (s-2) 8. g(t) = 2e"sin4tsin3t 3e% sin3tsinh 7t 4.5 4.5 H(s) = (s – 6.5)² +9 (s+7.5)² +9 j2 H(s) = s(s- 4) 9. h(t) = 10. h(t) = e"sinj2t Product Identities sin(A +B)+ sin(A –B) sinA cosB 1. sin(A +B)- sin(A -B) cos A sinB 2. cos(A -B)+ cos(A+B) cos A cosB: 3. 2 cos(A -B)- cos(A+B) sinA sinB 4.
Table of Laplace and Inverse Laplace Transforms
Time Domain
Complex Frequency Domain
F(s) = L f(t)
Functions
f(t)
Ø(t)
H(t)
Unit Impulse
1
Unit Step (Heaviside)
1/s
e "/s
Vs?
H(t-a)
-as
Unit Ramp
n!
Polynomial
sit
4s
t12)
pla-X (n=1,2..)
(1)(3)(5)....(2n – 1)/ (-)
2"
1
(s'k)
Exponential
e
kth Order
Exponential
n!
t'e
(s'k)""
Sine Wave
sin bt
s +b
Cosine Wave
cos bt
s +b
sinh bt
s -b
cosh bt
-b'
Damped Sine Wave
e" sinbt
(s'k}° +b²
Damped Cosine
Wave
(s`k)
(s kỷ +b²
" cosbt
b
' sinhbt
(s k)' -b"
(s`k)
(s`k -b?
e" coshbt
2bs
t sin bt
(s² +b² y°
(s² –b²)
(s² +b³ }°
2b
(s² +b° °
t cos bt
sin bt – bt cosbt
- 10 -
1030
Transcribed Image Text:Table of Laplace and Inverse Laplace Transforms Time Domain Complex Frequency Domain F(s) = L f(t) Functions f(t) Ø(t) H(t) Unit Impulse 1 Unit Step (Heaviside) 1/s e "/s Vs? H(t-a) -as Unit Ramp n! Polynomial sit 4s t12) pla-X (n=1,2..) (1)(3)(5)....(2n – 1)/ (-) 2" 1 (s'k) Exponential e kth Order Exponential n! t'e (s'k)"" Sine Wave sin bt s +b Cosine Wave cos bt s +b sinh bt s -b cosh bt -b' Damped Sine Wave e" sinbt (s'k}° +b² Damped Cosine Wave (s`k) (s kỷ +b² " cosbt b ' sinhbt (s k)' -b" (s`k) (s`k -b? e" coshbt 2bs t sin bt (s² +b² y° (s² –b²) (s² +b³ }° 2b (s² +b° ° t cos bt sin bt – bt cosbt - 10 - 1030
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,