t→∞ 4. Let f(x) be a function defined for 0 ≤ x ≤ π with Π and f(x)dx = Π 2 Π f(x) cos(nx) dx = 2- (1-(-1)+1) πλη4 Write the Fourier Cosine Series for f(x) on [0,π]. b. Use a Fourier Cosine Series to find the solution to ( uε (x, t) = 1 uxx(x,t), 0 0, ux(0,t) = ux(n,t) = 0, u(x, 0) = f(x), t > 0, 0 < x <π. C. Give lim u(x, t). t→∞

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
t→∞
4. Let f(x) be a function defined for 0 ≤ x ≤ π with
Π
and
f(x)dx =
Π
2
Π
f(x) cos(nx) dx = 2-
(1-(-1)+1)
πλη4
Write the Fourier Cosine Series for f(x) on [0,π].
b. Use a Fourier Cosine Series to find the solution to
( uε (x, t)
=
1
uxx(x,t), 0<x<π,t > 0,
ux(0,t) = ux(n,t) = 0,
u(x, 0) = f(x),
t > 0,
0 < x <π.
C.
Give lim u(x, t).
t→∞
Transcribed Image Text:t→∞ 4. Let f(x) be a function defined for 0 ≤ x ≤ π with Π and f(x)dx = Π 2 Π f(x) cos(nx) dx = 2- (1-(-1)+1) πλη4 Write the Fourier Cosine Series for f(x) on [0,π]. b. Use a Fourier Cosine Series to find the solution to ( uε (x, t) = 1 uxx(x,t), 0<x<π,t > 0, ux(0,t) = ux(n,t) = 0, u(x, 0) = f(x), t > 0, 0 < x <π. C. Give lim u(x, t). t→∞
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning