Thm (Hw Problem - pf)Component Nature Convergence] Let PiA C R"- BM Let f; AsR ,B be the Sth component fr of f. limit point of A. dim f (<)= L- (e,.-., lm) iff Hjc {l, m3 스m 우, (x)-서

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Prove the following theorem 

Thm (Hw Problem - pf) Component Nature oe Convergence]
Let PiA<R- BM Let f;AsR>R be the
jth Component fn of f.
Let ē bea
limit point of A.
dim f (=)=L=(4,.., lm) iff tjc E, m}
dim f;(x)-Jj
%3D
Transcribed Image Text:Thm (Hw Problem - pf) Component Nature oe Convergence] Let PiA<R- BM Let f;AsR>R be the jth Component fn of f. Let ē bea limit point of A. dim f (=)=L=(4,.., lm) iff tjc E, m} dim f;(x)-Jj %3D
Expert Solution
Step 1

Given function is f:Anm and fj:Anm be jth component. Let P be a limit point of A.

Case 1(Forward direction proof):

Let limx¯Pfx¯=L=l1,l2,,lm. Therefore for each ε>0 there exist a δ>0 such that:

fx¯-L<ε for all x¯ satisfying x¯-P<δ.

Consider the jth component of given function fjx¯.

Since fjx¯-ljfx¯-L, therefore for each ε>0, there exist a δ>0 such that:

                               fjx¯-ljfx¯-L<ε

Whenever x¯-P<δ. Hence limx¯Pfjx¯=lj.

Since j1,2,,m was arbitrary, therefore limx¯Pfjx¯=lj for all j1,2,,m.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,