This work aims to investigate the equilibria, local stability, global attractivity and the exact solutions of the following difference equations Bun-1un-5 YUn-3 - Sun-5 Un+1 = Qun-1+ n = 0,1,.., (1) Bun-1un-5 Yun-3 + Sun-5 where the coefficients a, B, y, and d are positive real numbers and the initial con- ditions u; for all i = -5, –4,..., 0, are arbitrary non-zero real numbers. We also Un+1 = aUn-1 n = 0,1,., (2) present the numerical solutions via some 2D graphs. 2. ON THE EQUATION Un+1 = QUn-1 + Bun-1un-5 yun-3-dun-5 This section is devoted to study the qualitative behaviors of Eq. (1). The equilibrium point of Eq. (1) is given by

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
This work aims to investigate the equilibria, local stability, global attractivity
and the exact solutions of the following difference equations
Bun-1un-5
Un+1 = aUn-1+
n = 0,1, ..,
(1)
YUn-3 - dun-5'
Bun-1un-5
Un+1 = aUn-1-
n = 0,1, ..,
(2)
YUn-3 + dun-5'
where the coefficients a, B, y, and & are positive real numbers and the initial con-
ditions ui for all i = -5, -4, .., 0, are arbitrary non-zero real numbers. We also
present the numerical solutions via some 2D graphs.
2. ON THE EQUATION Un+1 = aUn-1 +
Bun-1un-5
Yun-3-dun-5
(1). The
This section is devoted to study the qualitative behaviors of Eq.
equilibrium point of Eq. (1) is given by
6. EXACT SOLUTION OF EQ. (1) WHEN a =
B=y= 8 = 1
In this section, we investigate the exact solutions of the following rational differ-
ence equation
Un-1un-5
Иn+1 — ит-1 +
n = 0, 1, ...,
(10)
Un-3 - Un-5
where the initial conditions are positive real numbers.
Theorem 5 Let {un}n=-5
be a solution to Eq. (10) and suppose that u-5 =
d, u-1 = e, uo = f. Then, for n = 0, 1,2, .., the
а, и-4 — б, и_з — с, и-2 —
solutions of Eq. (10) are given by the following formulas:
e2n c"
U8n-5 =
(c- e)"(a – c)n'
f2n d"
bn-1(d - f)"(b– d)n'
cn+le2n
n-1
U8n-4 =
U8n-3 =
a" (a – c)" (c – e)"'
dn+1 f2n
b" (b – d)" (d- f)"'
e2n+1cn
U8n-2 =
U8n-1 =
a" (a – c)"(c – e)* '
f2n+1gn
br (b – d)"(d – f)"'
cn+1 e2n+1
U8n
U8n+1
a" (c - e)" (a – c)n+1>
dn+1 f2n+1
b" (d – f)"(b – d)n+1*
U8n+2 =
Proof.
It can be easily observed that the solutions are true for n = 0. We now
assume that n > 0 and that our assumption holds for n – 1. That is,
e2n-2 cn-1
n-2(c – e)n-1(a – c)n-1'
f2n-2 an-1
b2-2 (d – f)n-1(b – d)a-I?
U8n-13 =
U8n-12 =
c"e2n-2
U8n-11
n-1(a - c)a-1(c – e)n–1'
an-1
Transcribed Image Text:This work aims to investigate the equilibria, local stability, global attractivity and the exact solutions of the following difference equations Bun-1un-5 Un+1 = aUn-1+ n = 0,1, .., (1) YUn-3 - dun-5' Bun-1un-5 Un+1 = aUn-1- n = 0,1, .., (2) YUn-3 + dun-5' where the coefficients a, B, y, and & are positive real numbers and the initial con- ditions ui for all i = -5, -4, .., 0, are arbitrary non-zero real numbers. We also present the numerical solutions via some 2D graphs. 2. ON THE EQUATION Un+1 = aUn-1 + Bun-1un-5 Yun-3-dun-5 (1). The This section is devoted to study the qualitative behaviors of Eq. equilibrium point of Eq. (1) is given by 6. EXACT SOLUTION OF EQ. (1) WHEN a = B=y= 8 = 1 In this section, we investigate the exact solutions of the following rational differ- ence equation Un-1un-5 Иn+1 — ит-1 + n = 0, 1, ..., (10) Un-3 - Un-5 where the initial conditions are positive real numbers. Theorem 5 Let {un}n=-5 be a solution to Eq. (10) and suppose that u-5 = d, u-1 = e, uo = f. Then, for n = 0, 1,2, .., the а, и-4 — б, и_з — с, и-2 — solutions of Eq. (10) are given by the following formulas: e2n c" U8n-5 = (c- e)"(a – c)n' f2n d" bn-1(d - f)"(b– d)n' cn+le2n n-1 U8n-4 = U8n-3 = a" (a – c)" (c – e)"' dn+1 f2n b" (b – d)" (d- f)"' e2n+1cn U8n-2 = U8n-1 = a" (a – c)"(c – e)* ' f2n+1gn br (b – d)"(d – f)"' cn+1 e2n+1 U8n U8n+1 a" (c - e)" (a – c)n+1> dn+1 f2n+1 b" (d – f)"(b – d)n+1* U8n+2 = Proof. It can be easily observed that the solutions are true for n = 0. We now assume that n > 0 and that our assumption holds for n – 1. That is, e2n-2 cn-1 n-2(c – e)n-1(a – c)n-1' f2n-2 an-1 b2-2 (d – f)n-1(b – d)a-I? U8n-13 = U8n-12 = c"e2n-2 U8n-11 n-1(a - c)a-1(c – e)n–1' an-1
Furthermore, Eq. (10) gives us
U8n-5U8n-9
И8п-3 — U8n-5 +
U8n-7 - Ugn-9
e2n c"
2n-1n-1
e2n c"
+
a"-1(c – e)" (a – c)"
ап-1(с-е)п (а-с)п ап-1(а—с)п-1(с-е) -1
e2n-1cn-1
ап-1 (а—с)п—1(с-е)п-1
спе2n-1
an-1(c-e)n-1(a-c)n
2n c"
e2n cn
a"-1 (с — е)"(а — с)"
e2n cn
а" (с — е)" (а — с)т-т
(음-)
а — с
(с — е)" (а — с)"
e2n cn+1
a" (с — е)"(а — с)"
an
an
Also, Eq. (10) leads to
U8n-4u8n-8
U8n-2 = U8n-4 +
U8n-6
U8n-8
f2n-1 an-1
fn-1(d-f)r(b-d)n bn-1(b-d)n-1(d-f)n-I
f2n–1 dn-1
(b-d)n-1(d-f)n-I
f2n dn
f2n d"
bn-1(d – f)"(b – d)"
+
dn f2n-1
bn-1(d-f)n–1(b-d)n
hn
f2n d"
b* (d – f)"(b – d)n-1
f2n dn
bn-1(d – f)"(b –- d)"
f2m d"
br (d – f)"(b – d)n
f2n qn+1
b" (d – f)"(b – d)"
1
d)-1
Moreover, Eq. (10) gives
U8n-3U8n-7
U8n-1 = U8n-3 +
и8п-5 — и8n-7
cn+1e2n
а" (а-с)" (с—е)"
e2n cn
ап-1(с-е)" (а-с)"
c"2n-1
cn+le2n
aп-1(с-е)m — 1(а-с)"
а" (а — с)"(с — е)"
che2n-1
aп-1(с-е)m —1(а-с)т
an
cn+1e2n
c"e2n
a" (а — с)"(с — е)"
a" (с — е)"-1(а — с)" (1 +
c-e
n
cn+1e2n
c"e2n
a" (а — с)" (с — е)" а" (с - е)п-1(а — с)п
c" e2n+1
a" (a – c)"(c – e)"
Finally, Eq. (10) gives
Transcribed Image Text:Furthermore, Eq. (10) gives us U8n-5U8n-9 И8п-3 — U8n-5 + U8n-7 - Ugn-9 e2n c" 2n-1n-1 e2n c" + a"-1(c – e)" (a – c)" ап-1(с-е)п (а-с)п ап-1(а—с)п-1(с-е) -1 e2n-1cn-1 ап-1 (а—с)п—1(с-е)п-1 спе2n-1 an-1(c-e)n-1(a-c)n 2n c" e2n cn a"-1 (с — е)"(а — с)" e2n cn а" (с — е)" (а — с)т-т (음-) а — с (с — е)" (а — с)" e2n cn+1 a" (с — е)"(а — с)" an an Also, Eq. (10) leads to U8n-4u8n-8 U8n-2 = U8n-4 + U8n-6 U8n-8 f2n-1 an-1 fn-1(d-f)r(b-d)n bn-1(b-d)n-1(d-f)n-I f2n–1 dn-1 (b-d)n-1(d-f)n-I f2n dn f2n d" bn-1(d – f)"(b – d)" + dn f2n-1 bn-1(d-f)n–1(b-d)n hn f2n d" b* (d – f)"(b – d)n-1 f2n dn bn-1(d – f)"(b –- d)" f2m d" br (d – f)"(b – d)n f2n qn+1 b" (d – f)"(b – d)" 1 d)-1 Moreover, Eq. (10) gives U8n-3U8n-7 U8n-1 = U8n-3 + и8п-5 — и8n-7 cn+1e2n а" (а-с)" (с—е)" e2n cn ап-1(с-е)" (а-с)" c"2n-1 cn+le2n aп-1(с-е)m — 1(а-с)" а" (а — с)"(с — е)" che2n-1 aп-1(с-е)m —1(а-с)т an cn+1e2n c"e2n a" (а — с)"(с — е)" a" (с — е)"-1(а — с)" (1 + c-e n cn+1e2n c"e2n a" (а — с)" (с — е)" а" (с - е)п-1(а — с)п c" e2n+1 a" (a – c)"(c – e)" Finally, Eq. (10) gives
Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,