This work aims to investigate the equilibria, local stability, global attractivity and the exact solutions of the following difference equations Bun-1un-5 YUn-3 - Sun-5 Un+1 = Qun-1+ n = 0,1,.., (1) Bun-1un-5 Yun-3 + Sun-5 where the coefficients a, B, y, and d are positive real numbers and the initial con- ditions u; for all i = -5, –4,..., 0, are arbitrary non-zero real numbers. We also Un+1 = aUn-1 n = 0,1,., (2) present the numerical solutions via some 2D graphs. 2. ON THE EQUATION Un+1 = QUn-1 + Bun-1un-5 yun-3-dun-5 This section is devoted to study the qualitative behaviors of Eq. (1). The equilibrium point of Eq. (1) is given by
This work aims to investigate the equilibria, local stability, global attractivity and the exact solutions of the following difference equations Bun-1un-5 YUn-3 - Sun-5 Un+1 = Qun-1+ n = 0,1,.., (1) Bun-1un-5 Yun-3 + Sun-5 where the coefficients a, B, y, and d are positive real numbers and the initial con- ditions u; for all i = -5, –4,..., 0, are arbitrary non-zero real numbers. We also Un+1 = aUn-1 n = 0,1,., (2) present the numerical solutions via some 2D graphs. 2. ON THE EQUATION Un+1 = QUn-1 + Bun-1un-5 yun-3-dun-5 This section is devoted to study the qualitative behaviors of Eq. (1). The equilibrium point of Eq. (1) is given by
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![This work aims to investigate the equilibria, local stability, global attractivity
and the exact solutions of the following difference equations
Bun-1un-5
Un+1 = aUn-1+
n = 0,1, ..,
(1)
YUn-3 - dun-5'
Bun-1un-5
Un+1 = aUn-1-
n = 0,1, ..,
(2)
YUn-3 + dun-5'
where the coefficients a, B, y, and & are positive real numbers and the initial con-
ditions ui for all i = -5, -4, .., 0, are arbitrary non-zero real numbers. We also
present the numerical solutions via some 2D graphs.
2. ON THE EQUATION Un+1 = aUn-1 +
Bun-1un-5
Yun-3-dun-5
(1). The
This section is devoted to study the qualitative behaviors of Eq.
equilibrium point of Eq. (1) is given by
6. EXACT SOLUTION OF EQ. (1) WHEN a =
B=y= 8 = 1
In this section, we investigate the exact solutions of the following rational differ-
ence equation
Un-1un-5
Иn+1 — ит-1 +
n = 0, 1, ...,
(10)
Un-3 - Un-5
where the initial conditions are positive real numbers.
Theorem 5 Let {un}n=-5
be a solution to Eq. (10) and suppose that u-5 =
d, u-1 = e, uo = f. Then, for n = 0, 1,2, .., the
а, и-4 — б, и_з — с, и-2 —
solutions of Eq. (10) are given by the following formulas:
e2n c"
U8n-5 =
(c- e)"(a – c)n'
f2n d"
bn-1(d - f)"(b– d)n'
cn+le2n
n-1
U8n-4 =
U8n-3 =
a" (a – c)" (c – e)"'
dn+1 f2n
b" (b – d)" (d- f)"'
e2n+1cn
U8n-2 =
U8n-1 =
a" (a – c)"(c – e)* '
f2n+1gn
br (b – d)"(d – f)"'
cn+1 e2n+1
U8n
U8n+1
a" (c - e)" (a – c)n+1>
dn+1 f2n+1
b" (d – f)"(b – d)n+1*
U8n+2 =
Proof.
It can be easily observed that the solutions are true for n = 0. We now
assume that n > 0 and that our assumption holds for n – 1. That is,
e2n-2 cn-1
n-2(c – e)n-1(a – c)n-1'
f2n-2 an-1
b2-2 (d – f)n-1(b – d)a-I?
U8n-13 =
U8n-12 =
c"e2n-2
U8n-11
n-1(a - c)a-1(c – e)n–1'
an-1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5d564931-7cab-47e3-baee-f646b4270efc%2F9e7d56c1-94ad-43db-9988-8a7bb7b0a3fc%2Fx7ni5u9_processed.png&w=3840&q=75)
Transcribed Image Text:This work aims to investigate the equilibria, local stability, global attractivity
and the exact solutions of the following difference equations
Bun-1un-5
Un+1 = aUn-1+
n = 0,1, ..,
(1)
YUn-3 - dun-5'
Bun-1un-5
Un+1 = aUn-1-
n = 0,1, ..,
(2)
YUn-3 + dun-5'
where the coefficients a, B, y, and & are positive real numbers and the initial con-
ditions ui for all i = -5, -4, .., 0, are arbitrary non-zero real numbers. We also
present the numerical solutions via some 2D graphs.
2. ON THE EQUATION Un+1 = aUn-1 +
Bun-1un-5
Yun-3-dun-5
(1). The
This section is devoted to study the qualitative behaviors of Eq.
equilibrium point of Eq. (1) is given by
6. EXACT SOLUTION OF EQ. (1) WHEN a =
B=y= 8 = 1
In this section, we investigate the exact solutions of the following rational differ-
ence equation
Un-1un-5
Иn+1 — ит-1 +
n = 0, 1, ...,
(10)
Un-3 - Un-5
where the initial conditions are positive real numbers.
Theorem 5 Let {un}n=-5
be a solution to Eq. (10) and suppose that u-5 =
d, u-1 = e, uo = f. Then, for n = 0, 1,2, .., the
а, и-4 — б, и_з — с, и-2 —
solutions of Eq. (10) are given by the following formulas:
e2n c"
U8n-5 =
(c- e)"(a – c)n'
f2n d"
bn-1(d - f)"(b– d)n'
cn+le2n
n-1
U8n-4 =
U8n-3 =
a" (a – c)" (c – e)"'
dn+1 f2n
b" (b – d)" (d- f)"'
e2n+1cn
U8n-2 =
U8n-1 =
a" (a – c)"(c – e)* '
f2n+1gn
br (b – d)"(d – f)"'
cn+1 e2n+1
U8n
U8n+1
a" (c - e)" (a – c)n+1>
dn+1 f2n+1
b" (d – f)"(b – d)n+1*
U8n+2 =
Proof.
It can be easily observed that the solutions are true for n = 0. We now
assume that n > 0 and that our assumption holds for n – 1. That is,
e2n-2 cn-1
n-2(c – e)n-1(a – c)n-1'
f2n-2 an-1
b2-2 (d – f)n-1(b – d)a-I?
U8n-13 =
U8n-12 =
c"e2n-2
U8n-11
n-1(a - c)a-1(c – e)n–1'
an-1
![Furthermore, Eq. (10) gives us
U8n-5U8n-9
И8п-3 — U8n-5 +
U8n-7 - Ugn-9
e2n c"
2n-1n-1
e2n c"
+
a"-1(c – e)" (a – c)"
ап-1(с-е)п (а-с)п ап-1(а—с)п-1(с-е) -1
e2n-1cn-1
ап-1 (а—с)п—1(с-е)п-1
спе2n-1
an-1(c-e)n-1(a-c)n
2n c"
e2n cn
a"-1 (с — е)"(а — с)"
e2n cn
а" (с — е)" (а — с)т-т
(음-)
а — с
(с — е)" (а — с)"
e2n cn+1
a" (с — е)"(а — с)"
an
an
Also, Eq. (10) leads to
U8n-4u8n-8
U8n-2 = U8n-4 +
U8n-6
U8n-8
f2n-1 an-1
fn-1(d-f)r(b-d)n bn-1(b-d)n-1(d-f)n-I
f2n–1 dn-1
(b-d)n-1(d-f)n-I
f2n dn
f2n d"
bn-1(d – f)"(b – d)"
+
dn f2n-1
bn-1(d-f)n–1(b-d)n
hn
f2n d"
b* (d – f)"(b – d)n-1
f2n dn
bn-1(d – f)"(b –- d)"
f2m d"
br (d – f)"(b – d)n
f2n qn+1
b" (d – f)"(b – d)"
1
d)-1
Moreover, Eq. (10) gives
U8n-3U8n-7
U8n-1 = U8n-3 +
и8п-5 — и8n-7
cn+1e2n
а" (а-с)" (с—е)"
e2n cn
ап-1(с-е)" (а-с)"
c"2n-1
cn+le2n
aп-1(с-е)m — 1(а-с)"
а" (а — с)"(с — е)"
che2n-1
aп-1(с-е)m —1(а-с)т
an
cn+1e2n
c"e2n
a" (а — с)"(с — е)"
a" (с — е)"-1(а — с)" (1 +
c-e
n
cn+1e2n
c"e2n
a" (а — с)" (с — е)" а" (с - е)п-1(а — с)п
c" e2n+1
a" (a – c)"(c – e)"
Finally, Eq. (10) gives](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5d564931-7cab-47e3-baee-f646b4270efc%2F9e7d56c1-94ad-43db-9988-8a7bb7b0a3fc%2Fbabyho_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Furthermore, Eq. (10) gives us
U8n-5U8n-9
И8п-3 — U8n-5 +
U8n-7 - Ugn-9
e2n c"
2n-1n-1
e2n c"
+
a"-1(c – e)" (a – c)"
ап-1(с-е)п (а-с)п ап-1(а—с)п-1(с-е) -1
e2n-1cn-1
ап-1 (а—с)п—1(с-е)п-1
спе2n-1
an-1(c-e)n-1(a-c)n
2n c"
e2n cn
a"-1 (с — е)"(а — с)"
e2n cn
а" (с — е)" (а — с)т-т
(음-)
а — с
(с — е)" (а — с)"
e2n cn+1
a" (с — е)"(а — с)"
an
an
Also, Eq. (10) leads to
U8n-4u8n-8
U8n-2 = U8n-4 +
U8n-6
U8n-8
f2n-1 an-1
fn-1(d-f)r(b-d)n bn-1(b-d)n-1(d-f)n-I
f2n–1 dn-1
(b-d)n-1(d-f)n-I
f2n dn
f2n d"
bn-1(d – f)"(b – d)"
+
dn f2n-1
bn-1(d-f)n–1(b-d)n
hn
f2n d"
b* (d – f)"(b – d)n-1
f2n dn
bn-1(d – f)"(b –- d)"
f2m d"
br (d – f)"(b – d)n
f2n qn+1
b" (d – f)"(b – d)"
1
d)-1
Moreover, Eq. (10) gives
U8n-3U8n-7
U8n-1 = U8n-3 +
и8п-5 — и8n-7
cn+1e2n
а" (а-с)" (с—е)"
e2n cn
ап-1(с-е)" (а-с)"
c"2n-1
cn+le2n
aп-1(с-е)m — 1(а-с)"
а" (а — с)"(с — е)"
che2n-1
aп-1(с-е)m —1(а-с)т
an
cn+1e2n
c"e2n
a" (а — с)"(с — е)"
a" (с — е)"-1(а — с)" (1 +
c-e
n
cn+1e2n
c"e2n
a" (а — с)" (с — е)" а" (с - е)п-1(а — с)п
c" e2n+1
a" (a – c)"(c – e)"
Finally, Eq. (10) gives
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)