This problem involves a cylinder falling inside a pipe that is filled with oil, as depicted in the figure. The small space between the cylinder and the pipe is lubricated with an oil film that has viscosity . Derive a formula for the steady rate of descent of a cylinder with weight W, diameter d, and length sliding inside a vertical smooth pipe that has inside diameter D. Assume that the cylinder is concentric with the pipe as it falls. Use the general formula to find the rate of descent of a cylinder 100 mm in diameter that slides inside a 100.5 mm pipe. The cylinder is 200 mm long and weighs 15 N. The lubricant is SAE 20W oil at 10°C.
This problem involves a cylinder falling inside a pipe that is filled with oil, as depicted in the figure. The small space between the cylinder and the pipe is lubricated with an oil film that has viscosity . Derive a formula for the steady rate of descent of a cylinder with weight W, diameter d, and length sliding inside a vertical smooth pipe that has inside diameter D. Assume that the cylinder is concentric with the pipe as it falls. Use the general formula to find the rate of descent of a cylinder 100 mm in diameter that slides inside a 100.5 mm pipe. The cylinder is 200 mm long and weighs 15 N. The lubricant is SAE 20W oil at 10°C.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
This problem involves a cylinder falling inside a pipe that
is filled with oil, as depicted in the figure. The small space between
the cylinder and the pipe is lubricated with an oil film that
has viscosity . Derive a formula for the steady rate of descent
of a cylinder with weight W, diameter d, and length sliding inside
a vertical smooth pipe that has inside diameter D. Assume
that the cylinder is concentric with the pipe as it falls. Use the
general formula to find the rate of descent of a cylinder 100
mm in diameter that slides inside a 100.5 mm pipe. The cylinder
is 200 mm long and weighs 15 N. The lubricant is SAE
20W oil at 10°C.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning