This is the first part of a two-part problem. Let O 21 P = -2 sin(2t)] -2 cos(2t)]* cos(2t) y1(t) sin(2t)| ÿ2(t) = a. Show that 1(t) is a solution to the system i' = Pý by evaluating derivatives and the matrix product O 2] -2 Enter your answers in terms of the variable t. b. Show that y2(t) is a solution to the system i' = Pj by evaluating derivatives and the matrix product %(t) y2(t) Enter your answers in terms of the variable t.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
This is the first part of a two-part problem.
Let
O 21
P =
-2 sin(2t)]
-2 cos(2t)]*
cos(2t)
y1(t)
sin(2t)| ÿ2(t) =
a. Show that 1(t) is a solution to the system i' = Pý by evaluating derivatives and the
matrix product
O 2]
-2
Enter your answers in terms of the variable t.
b. Show that y2(t) is a solution to the system i' = Pj by evaluating derivatives and the
matrix product
%(t)
y2(t)
Enter your answers in terms of the variable t.
Transcribed Image Text:This is the first part of a two-part problem. Let O 21 P = -2 sin(2t)] -2 cos(2t)]* cos(2t) y1(t) sin(2t)| ÿ2(t) = a. Show that 1(t) is a solution to the system i' = Pý by evaluating derivatives and the matrix product O 2] -2 Enter your answers in terms of the variable t. b. Show that y2(t) is a solution to the system i' = Pj by evaluating derivatives and the matrix product %(t) y2(t) Enter your answers in terms of the variable t.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,