I'm working through a 2D PDE and i've gotten stuck (if the rest of my work is correct). so I'm getting confused checking the boundry conditions. first, no where says that a has to be a finite number so I dont know if this checks out (this might be a question for my teacher so no worries if you cant answer that). second is u(x,y=0,t) I'm not getting zero, I'm not sure where I'm going wrong?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I'm working through a 2D PDE and i've gotten stuck (if the rest of my work is correct). so I'm getting confused checking the boundry conditions. first, no where says that a has to be a finite number so I dont know if this checks out (this might be a question for my teacher so no worries if you cant answer that). second is u(x,y=0,t) I'm not getting zero, I'm not sure where I'm going wrong?

IS THIS ENOUGH
PROOF ?
3.7.29)
IVBP
SOLN
4m
Ban= +
[f(x,y) = sin(TTX)Sin (TTY)
Imn
2D WAVE EQ:
2+4
Zmn T
*
0
BC
Binn
Ic:
¦
∞∞
U(x,y₁ t) = Σ Bmn Cost Bin Sin Amt) sin(
MED 1=1
frü TE
0
R-1/[
B = 4 Sin (TTX) Sin (mITX) dx) sin (ITY) Sin (nity) dy
mn
O
g(x, y) = sin(TTX) asbel, cat
2²u
2574642 = ( ² ( 24 x2 + 3642) (Cuz given 917)
26²
2x²
2y²
ulo, y, z) = u(a, y, t) = 0 For osy ≤b tzo
u (x₁0₁ t) = u(x, b₁ t) = 0 For 0≤x≤a, tzo
исх, у, 2) = f(x,y)
3+ (x, y,0) = f(x,y)
2mn = C₁T | M² 2+1/² 2
+मर
вла
4
Bu abd mm
=
mn
[
Sin (TX) Sin (MTX) dx Sin (nity) dy
Jo
> { /
Sin (MITX )Sin (NTTx) dx =
0
B-aff f(xy) sin(at2) sm (TTY) dxd y
4
Sin
ab
2
N&M
rbra
I.
n=m=1
Marion
сипи
96xy) sin (**) Sin (2) dedy
2
San An) sin (m) Sin (ny)
a
=
J
IF
IF
I
топ
m&n
n=1=m
n=1&m
4
(n=1) 2mn 2 TT
-# (105(F) + 1)
X
cm)
Transcribed Image Text:IS THIS ENOUGH PROOF ? 3.7.29) IVBP SOLN 4m Ban= + [f(x,y) = sin(TTX)Sin (TTY) Imn 2D WAVE EQ: 2+4 Zmn T * 0 BC Binn Ic: ¦ ∞∞ U(x,y₁ t) = Σ Bmn Cost Bin Sin Amt) sin( MED 1=1 frü TE 0 R-1/[ B = 4 Sin (TTX) Sin (mITX) dx) sin (ITY) Sin (nity) dy mn O g(x, y) = sin(TTX) asbel, cat 2²u 2574642 = ( ² ( 24 x2 + 3642) (Cuz given 917) 26² 2x² 2y² ulo, y, z) = u(a, y, t) = 0 For osy ≤b tzo u (x₁0₁ t) = u(x, b₁ t) = 0 For 0≤x≤a, tzo исх, у, 2) = f(x,y) 3+ (x, y,0) = f(x,y) 2mn = C₁T | M² 2+1/² 2 +मर вла 4 Bu abd mm = mn [ Sin (TX) Sin (MTX) dx Sin (nity) dy Jo > { / Sin (MITX )Sin (NTTx) dx = 0 B-aff f(xy) sin(at2) sm (TTY) dxd y 4 Sin ab 2 N&M rbra I. n=m=1 Marion сипи 96xy) sin (**) Sin (2) dedy 2 San An) sin (m) Sin (ny) a = J IF IF I топ m&n n=1=m n=1&m 4 (n=1) 2mn 2 TT -# (105(F) + 1) X cm)
ulx, y, z) = (cos(12²) + + √2 Sin (√₂t)) SINITX COSITY
VERIFY: ulo, y, z)
u(a, y, t)
K(x₁0, t) = (
Sin (0) = 0
= Sın (ait) =0
FOR
) Sin (TX) COS (0) +0
1?
a WHOLE NUMBE
Transcribed Image Text:ulx, y, z) = (cos(12²) + + √2 Sin (√₂t)) SINITX COSITY VERIFY: ulo, y, z) u(a, y, t) K(x₁0, t) = ( Sin (0) = 0 = Sın (ait) =0 FOR ) Sin (TX) COS (0) +0 1? a WHOLE NUMBE
Expert Solution
Introduction

As per the question we are given a candidate solution u(x,y,t) which fails to satisfy the boundary conditions to the 2d wave equation as :

u(a,y,t) ≠ 0  ,  u(x,b,t) ≠ 0  ,  u(x,0,t) ≠ 0

And we have to find the correct solution which satisfies all the boundary conditions.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

This doesn't make sense, a and b are already defined in the problem as 1...

Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,