There exist two positive distinctive real numbers P and Q representing two positive roots of Eq.(4.19) such that [(a1 + a3 + a5) – (a2 + a4)] + 8 P = (4.21) 2 [(81 + 33 + B5) + A (82 + B4)] and [(a1 + a3 + a5) - (a2 + a4)] – 8 2 [(31 + 33 + B5) + A (32 + B4)] (4.22) where V[(a1 + a3 + a5) – (a2 + a4)]² – n, and 4 [(a1 + a3 + a5) – (a2 + a4)] [(B1 + B3 + B5) (a2 +a4) + A (B2 + B4) (a1 + a3 + a5)] [((32 + B4) – (B1 + B3 + 35)) (A+ 1)]
There exist two positive distinctive real numbers P and Q representing two positive roots of Eq.(4.19) such that [(a1 + a3 + a5) – (a2 + a4)] + 8 P = (4.21) 2 [(81 + 33 + B5) + A (82 + B4)] and [(a1 + a3 + a5) - (a2 + a4)] – 8 2 [(31 + 33 + B5) + A (32 + B4)] (4.22) where V[(a1 + a3 + a5) – (a2 + a4)]² – n, and 4 [(a1 + a3 + a5) – (a2 + a4)] [(B1 + B3 + B5) (a2 +a4) + A (B2 + B4) (a1 + a3 + a5)] [((32 + B4) – (B1 + B3 + 35)) (A+ 1)]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Explain the determine blue and the inf is here
![Let P and Q are two distinct real roots of the quadratic equation
t² – ( P+ Q) t + PQ = 0.
[(81 + B3 + B5) + A (32 + B4)]t² – [(aı + a3 + a5) – (a2 + a4)] t
[(а1 + аз + as) — (а2 + а)] [(B1 + Bз + B5) (аэ + aд) + A(B2 + Bа) (а1 + оз + as)]
+
[(31 + Вз + В5) +A(32 + B)] [(B2 + Ba) — (31 + В3 + В5)) (А + 1)]
-
= 0,
(4.19)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe1c5a833-e8e1-4192-bf76-b19122b6605c%2Fdfdbdb41-d4b7-4d38-a471-9d2968f47530%2Fldfvuch_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let P and Q are two distinct real roots of the quadratic equation
t² – ( P+ Q) t + PQ = 0.
[(81 + B3 + B5) + A (32 + B4)]t² – [(aı + a3 + a5) – (a2 + a4)] t
[(а1 + аз + as) — (а2 + а)] [(B1 + Bз + B5) (аэ + aд) + A(B2 + Bа) (а1 + оз + as)]
+
[(31 + Вз + В5) +A(32 + B)] [(B2 + Ba) — (31 + В3 + В5)) (А + 1)]
-
= 0,
(4.19)
![There exist two positive distinctive real numbers P and Q representing two
positive roots of Eq.(4.19) such that
[(a1 + a3 + a5) – (a2 + a4)] + 8
2 [(B1 + B3 + B5)+ A (82 + B4)]
P =
(4.21)
and
[(a1 + a3 + a5) – (a2 + a4)] – 8
2 [(81 + B3 + B5) + A (B2 + B4)]
(4.22)
where
[(@1 + a3 + a5) – (a2 + a4)]² –
n,
and
4 [(@1 + a3 + a5) – (x2 + a4)] [(B1 + B3 + B5) (a2 + a4) + A (B2 + B4) (a1+ a3 + a5)]
[((32 + B4) – (B1 + B3 + B5)) (A +1)]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe1c5a833-e8e1-4192-bf76-b19122b6605c%2Fdfdbdb41-d4b7-4d38-a471-9d2968f47530%2F7tzqxhd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:There exist two positive distinctive real numbers P and Q representing two
positive roots of Eq.(4.19) such that
[(a1 + a3 + a5) – (a2 + a4)] + 8
2 [(B1 + B3 + B5)+ A (82 + B4)]
P =
(4.21)
and
[(a1 + a3 + a5) – (a2 + a4)] – 8
2 [(81 + B3 + B5) + A (B2 + B4)]
(4.22)
where
[(@1 + a3 + a5) – (a2 + a4)]² –
n,
and
4 [(@1 + a3 + a5) – (x2 + a4)] [(B1 + B3 + B5) (a2 + a4) + A (B2 + B4) (a1+ a3 + a5)]
[((32 + B4) – (B1 + B3 + B5)) (A +1)]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

