There are a set of courses, each of them requiring a set of disjoint time intervals. For example, a course could require the time from 9am to 11am and 2pm to 3pm and 4pm to 5pm. You want to know, given a number K, if it’s possible to take at least K courses. You can only take one course at any single point in time (i.e. any two courses you choose can’t overlap). Show that the problem is NP-complete, which means that choosing courses is indeed a difficult thing in our life. Use a reduction from the Independent set problem.
There are a set of courses, each of them requiring a set of disjoint time intervals. For example, a course could require the time from 9am to 11am and 2pm to 3pm and 4pm to 5pm. You want to know, given a number K, if it’s possible to take at least K courses. You can only take one course at any single point in time (i.e. any two courses you choose can’t overlap). Show that the problem is NP-complete, which means that choosing courses is indeed a difficult thing in our life. Use a reduction from the Independent set problem.
Related questions
Question
There are a set of courses, each of them requiring a set of disjoint time intervals. For example, a course could require the time from 9am to 11am and 2pm to 3pm and 4pm to 5pm. You want to know, given a number K, if it’s possible to take at least K courses. You can only take one course at any single point in time (i.e. any two courses you choose can’t overlap). Show that the problem is NP-complete, which means that choosing courses is indeed a difficult thing in our life. Use a reduction from the Independent set problem.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images