Theorem: If A has a repeated real root λ with corresponding eigenvector K, then all solutions of X' = A X are of the form: ( * ) - Ge" K₁+ = e¹¹ K₁+ c₂ ( t e¹¹ K₁ + ett (3) W1 where (A - I) = K₁. W2 Theorem: Let ₁ = α + i ẞ be a complex eigenvalue of the coefficient matrix A with corresponding eigenvector K₁ = B₁ + i B2. Then all solutions of X' = A X are of the form: x c₁ (B₁ cos ẞt - B₂ sin ẞt) eat + c2 (B2 cos ẞt + B₁ sin ẞt) eat. ν x That is: C₁ (Re(K₁) cos ẞt - Im(K₁) sin ẞt) eat + 2 (Im(K₁) cos ẞt + Re(K₁) sin ẞt) eat. y
Theorem: If A has a repeated real root λ with corresponding eigenvector K, then all solutions of X' = A X are of the form: ( * ) - Ge" K₁+ = e¹¹ K₁+ c₂ ( t e¹¹ K₁ + ett (3) W1 where (A - I) = K₁. W2 Theorem: Let ₁ = α + i ẞ be a complex eigenvalue of the coefficient matrix A with corresponding eigenvector K₁ = B₁ + i B2. Then all solutions of X' = A X are of the form: x c₁ (B₁ cos ẞt - B₂ sin ẞt) eat + c2 (B2 cos ẞt + B₁ sin ẞt) eat. ν x That is: C₁ (Re(K₁) cos ẞt - Im(K₁) sin ẞt) eat + 2 (Im(K₁) cos ẞt + Re(K₁) sin ẞt) eat. y
Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter4: Eigenvalues And Eigenvectors
Section4.6: Applications And The Perron-frobenius Theorem
Problem 70EQ
Related questions
Question
Using the attached theorms, Solve dx/dt =2x+4y , dy/dt=-x+6y
![Theorem: If A has a repeated real root λ with corresponding eigenvector K, then all
solutions of X' = A X are of the form:
( * ) - Ge" K₁+
=
e¹¹ K₁+ c₂ ( t e¹¹ K₁ + ett
(3)
W1
where (A - I)
= K₁.
W2
Theorem: Let ₁ = α + i ẞ be a complex eigenvalue of the coefficient matrix A with corresponding
eigenvector K₁ = B₁ + i B2. Then all solutions of X' = A X are of the form:
x
c₁ (B₁ cos ẞt - B₂ sin ẞt) eat + c2 (B2 cos ẞt + B₁ sin ẞt) eat.
ν
x
That is:
C₁ (Re(K₁) cos ẞt - Im(K₁) sin ẞt) eat + 2 (Im(K₁) cos ẞt + Re(K₁) sin ẞt) eat.
y](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc4436f5f-01e3-4d46-baa5-3f23cf388ae7%2F0b4797b3-1f75-48c1-8642-91805ac646b7%2Fn4dr82y_processed.png&w=3840&q=75)
Transcribed Image Text:Theorem: If A has a repeated real root λ with corresponding eigenvector K, then all
solutions of X' = A X are of the form:
( * ) - Ge" K₁+
=
e¹¹ K₁+ c₂ ( t e¹¹ K₁ + ett
(3)
W1
where (A - I)
= K₁.
W2
Theorem: Let ₁ = α + i ẞ be a complex eigenvalue of the coefficient matrix A with corresponding
eigenvector K₁ = B₁ + i B2. Then all solutions of X' = A X are of the form:
x
c₁ (B₁ cos ẞt - B₂ sin ẞt) eat + c2 (B2 cos ẞt + B₁ sin ẞt) eat.
ν
x
That is:
C₁ (Re(K₁) cos ẞt - Im(K₁) sin ẞt) eat + 2 (Im(K₁) cos ẞt + Re(K₁) sin ẞt) eat.
y
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning