Theorem 9 Let {um}=-5 be a solution to Eq. (18) and suppose that u-s = a, u-4 = b, u_3 = c, u_2 = d, u-1 = e, uo = f. Then, for n = solutions of Eq. (18) are given by the following formulas: 0, 1, 2, ..., the e2n 2n-1 (ie + c)(ic+a)' f2n2n-1 IT(if + d)(id + b)' U8n-5 = 2n-1 U8n-4 U8n-3 = 2n-1 IT, (ic + a) IT (ie + c)' dan f2n n-1 U8n-2 IT, (id + b) IT'(if +d)' e2n+12n U8n-1 ITE, (ie + c)(ic + a) f2n+!d2n IT, (if + d)(id + b)' U8n = c2n+1@2n+1 U8n+1 2n IT (ic+ a) (ie + c)' d?n+1 f2n+1 IT*(id + b) [T": (if + d) U8n+2 = i=1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
11. EXACT SOLUTION OF EQ. (2) WHEN a = B = y = 8 = 1
This section shows the exact solutions of the following equation:
Un-1un-5
Un+1 = Un-1
n = 0, 1, ...,
(18)
Un-3 + un-5
where the initial conditions are selected to be positive real numbers.
Theorem 9 Let {un}5 be a solution to Eq. (18) and suppose that u-5 =
а, и-4 3D 6, и-з 3D с, и-2%3D d, и-1 — е, ио 3D f. Then, for n 3 0, 1, 2, .., the
solutions of Eq. (18) are given by the following formulas:
e2n 2n-1
II (ie + c)(ic+a)*
f2n d2n-1
IT (if + d)(id + b)'
c2n e2n
U8n-5 =
2n-
U8n-4 =
2n-1
U8n-3 =
2n-1
IT (ic + a) IT (ie + c)
d2n f2n
U8n-2 =
IT, (id + b) II if + d)
=D1
e2n+1c2n
U8n-1 =
IT, (ie + c)(ic+a)
f2n+1d2n
II (if + d)(id + b)'
U8n =
c2n+1e2n+1
U8n+1 =
2n+1
ITT (ic+ a) II, (ie + c)
d2n+1 f2n+1
U8n+2 =
2n+1
IIT (id + b) [I, (if + d)'
Proof.
that n >0 and assume that our assumption holds for n- 1. That is,
It can be easily seen that the solutions are true for n = 0. We suppose
e2n-2,2n-3
U8n-13 =
2n-3
IT (ie + c)(ic + a)
f2n-2?n-3
IT(if + d)(id + b)
2n-2 2n-2
U8n-12 =
2n-3
U8n-11 =
2n-2
li=1
2n-3
I (ic+a) I (ie + c)
d2n-2 f2n-2
U8n-10 =
T2n-2
IT(id + b) IT (if + d)
li=1
e2n-12n-2
U8n-9 =
2n-2
ITE (ie + c)(ic +
f2n-12n-2
n-2
U8n-8 =
II(if + d)(id + b)
c2n-1e2n-1
U8n-7 =
2n-2
(ic+ a) II(ie +c)
d2n-1 f2n-1
IT (id + b) II (if + d)
U8n-6 =
In addition, Eq. (18) leads to
U8n-5U8n-9
U8n-3 = U8n-5
U8n-7 + ug8n-9
2n 2n-1
2n-12n-2
e2n c2n–1
IT (ie+c)(ic+a) IT¿²(ie+c)(ic+a)
li=1
c2n-1 e2n-1
IT"'(ic+a) [I?",?(ie+c)
2n-1(ie+c)(ic +a)
e2n –1 c2n–2
T (ie+c)(ic+a)
c2n-2e2n
2n-2
+
e2n c2n-1
'ie+c)(ic+a) I'(ie + c)(ic+a) I (ic+ a)(Ttieta) + eI!n-
-1
li=1 (ic+a)
e2n 2n-1
c2n-2e2n
%3D
II"(ie + c)(ic + a) II(ie +c)(ic + a) (en-ijeta + )
2n-1
i3D1
(2n–1)c+a
c2n-1e2n ((2n – 1)c+a)
I (ie + c)(ic +a) II (ie + c)(ic+ a) ((2n)c + a)
(2n – 1)c+ a)
(2n)c+ a
e2n _2n-1
2n-1
2n-1
=1
i=1
e2n c2n-1
%3D
1-
2n-1
II (ie + c)(ic+a)
i=1
e2n 2n
c2n e2n
%3D
2п-1
II"T (ie + c)(ic + a)((2n)c + a) II", (ic + a) II" (ie + c)
2n-1
Similarly, one can prove other solutions.
Transcribed Image Text:11. EXACT SOLUTION OF EQ. (2) WHEN a = B = y = 8 = 1 This section shows the exact solutions of the following equation: Un-1un-5 Un+1 = Un-1 n = 0, 1, ..., (18) Un-3 + un-5 where the initial conditions are selected to be positive real numbers. Theorem 9 Let {un}5 be a solution to Eq. (18) and suppose that u-5 = а, и-4 3D 6, и-з 3D с, и-2%3D d, и-1 — е, ио 3D f. Then, for n 3 0, 1, 2, .., the solutions of Eq. (18) are given by the following formulas: e2n 2n-1 II (ie + c)(ic+a)* f2n d2n-1 IT (if + d)(id + b)' c2n e2n U8n-5 = 2n- U8n-4 = 2n-1 U8n-3 = 2n-1 IT (ic + a) IT (ie + c) d2n f2n U8n-2 = IT, (id + b) II if + d) =D1 e2n+1c2n U8n-1 = IT, (ie + c)(ic+a) f2n+1d2n II (if + d)(id + b)' U8n = c2n+1e2n+1 U8n+1 = 2n+1 ITT (ic+ a) II, (ie + c) d2n+1 f2n+1 U8n+2 = 2n+1 IIT (id + b) [I, (if + d)' Proof. that n >0 and assume that our assumption holds for n- 1. That is, It can be easily seen that the solutions are true for n = 0. We suppose e2n-2,2n-3 U8n-13 = 2n-3 IT (ie + c)(ic + a) f2n-2?n-3 IT(if + d)(id + b) 2n-2 2n-2 U8n-12 = 2n-3 U8n-11 = 2n-2 li=1 2n-3 I (ic+a) I (ie + c) d2n-2 f2n-2 U8n-10 = T2n-2 IT(id + b) IT (if + d) li=1 e2n-12n-2 U8n-9 = 2n-2 ITE (ie + c)(ic + f2n-12n-2 n-2 U8n-8 = II(if + d)(id + b) c2n-1e2n-1 U8n-7 = 2n-2 (ic+ a) II(ie +c) d2n-1 f2n-1 IT (id + b) II (if + d) U8n-6 = In addition, Eq. (18) leads to U8n-5U8n-9 U8n-3 = U8n-5 U8n-7 + ug8n-9 2n 2n-1 2n-12n-2 e2n c2n–1 IT (ie+c)(ic+a) IT¿²(ie+c)(ic+a) li=1 c2n-1 e2n-1 IT"'(ic+a) [I?",?(ie+c) 2n-1(ie+c)(ic +a) e2n –1 c2n–2 T (ie+c)(ic+a) c2n-2e2n 2n-2 + e2n c2n-1 'ie+c)(ic+a) I'(ie + c)(ic+a) I (ic+ a)(Ttieta) + eI!n- -1 li=1 (ic+a) e2n 2n-1 c2n-2e2n %3D II"(ie + c)(ic + a) II(ie +c)(ic + a) (en-ijeta + ) 2n-1 i3D1 (2n–1)c+a c2n-1e2n ((2n – 1)c+a) I (ie + c)(ic +a) II (ie + c)(ic+ a) ((2n)c + a) (2n – 1)c+ a) (2n)c+ a e2n _2n-1 2n-1 2n-1 =1 i=1 e2n c2n-1 %3D 1- 2n-1 II (ie + c)(ic+a) i=1 e2n 2n c2n e2n %3D 2п-1 II"T (ie + c)(ic + a)((2n)c + a) II", (ic + a) II" (ie + c) 2n-1 Similarly, one can prove other solutions.
U8n-5 U8n-9
U8n-3
U8n-5 – U8n-7 –
U8n-7-U8n-9
Transcribed Image Text:U8n-5 U8n-9 U8n-3 U8n-5 – U8n-7 – U8n-7-U8n-9
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,