Theorem 5.2. Let N be a Poisson random variable with parameter µ, and condi- tional on N, let M have a binomial distribution with parameters N and p. Then the unconditional distribution of M is Poisson with parameter µp. Proof.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

#Proof.

Theorem 5.2. Let N be a Poisson random variable with parameter µ, and condi-
tional on N, let M have a binomial distribution with parameters N and p. Then the
unconditional distribution of M is Poisson with parameter µp.
Proof.
Transcribed Image Text:Theorem 5.2. Let N be a Poisson random variable with parameter µ, and condi- tional on N, let M have a binomial distribution with parameters N and p. Then the unconditional distribution of M is Poisson with parameter µp. Proof.
Theorem 5.2. Let N be a Poisson random variable with parameter µ, and condi-
tional on N, let M have a binomial distribution with parameters N and p. Then the
unconditional distribution of M is Poisson with parameter µp.
Proof.
Transcribed Image Text:Theorem 5.2. Let N be a Poisson random variable with parameter µ, and condi- tional on N, let M have a binomial distribution with parameters N and p. Then the unconditional distribution of M is Poisson with parameter µp. Proof.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer