Theorem 3.2.10. Let ICR be an open interval, let e E1, let f, g:1-{c}-R be functions and let keR. Suppose that lim f(x) and limg(x) exist. 1. lim [f+g](x) exists and lim[f+g](x)= lim f(x) + limg(x). 2. lim f-g](x) exists and lim[f-g](x)= lim f(x)- limg(x) 3. lim kf1(x) exists and lim k f1(x) = klim f(x). 4. lim [fg](x) exists and lim[fg](x) = [lim f(x)] · [limg(x)}. lim f) 5. If limg(x) # 0, then lim [4] (x) exists and lim [4] (x) = Prove above theorem. lim()

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Theorem 3.2.10. Let ICR be an open interval, let e e 1, let f,g:1-{c} -R be
functions and let k ER. Suppose that lim f(x) and limg(x) exist.
1. lim [f+g](x) exists and lim[f+g](x) = lim f(x) + lim g(x).
2. lim [f-g](x) exists and lim[f-g](x) = lim f(x)– limg(x).
3. lim k f1(x) exists and lim k f1(x) = klim f(x).
4. lim [fg](x) exists and lim[fg](x) = [lim f(x) [limg(x)).
lim f()
5. If limg(x) # 0, then lim [4 (x) exists and lim(x) = im )
Prove above theorem.
Transcribed Image Text:Theorem 3.2.10. Let ICR be an open interval, let e e 1, let f,g:1-{c} -R be functions and let k ER. Suppose that lim f(x) and limg(x) exist. 1. lim [f+g](x) exists and lim[f+g](x) = lim f(x) + lim g(x). 2. lim [f-g](x) exists and lim[f-g](x) = lim f(x)– limg(x). 3. lim k f1(x) exists and lim k f1(x) = klim f(x). 4. lim [fg](x) exists and lim[fg](x) = [lim f(x) [limg(x)). lim f() 5. If limg(x) # 0, then lim [4 (x) exists and lim(x) = im ) Prove above theorem.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,