The working fluid of a liquid-vapor cycle is 1kg of R-134a (Hint: Use the R-134a thermodynamic tables.) The cycle operates between two pressures 100kPa and 1000kPa. Process A-B: An isobaric compression at the high pressure from a saturated vapor to a saturated liquid. • ProcessB-C: An iso-entropic process from the high pressure to the low pressure. Process C-D: An isobaric expansion at the low pressure. •Process D-A: An iso-entropic process from the low pressure to the high pressure. • a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality factor (T, P, V, U, H, S & x) at the start of each process. b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change in S) during each leg of the cycle.AH, AU, Q, W, Aentropy (c) Draw a well-labeled T-S diagram (indicating lines of constant pressure and the saturation dome.) d) Calculate the coefficient of performance of the cycle

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
The working fluid of a liquid-vapor cycle is 1kg of R-134a (Hint: Use the R-134a thermodynamic tables.)
The cycle operates between two pressures 100kPa and 1000kPa.
Process A-B: An isobaric compression at the high pressure from a saturated vapor to a saturated liquid.
• ProcessB-C: An iso-entropic process from the high pressure to the low pressure.
• Process C-D: An isobaric expansion at the low pressure.
•Process D-A: An iso-entropic process from the low pressure to the high pressure.
•a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality
factor (T, P, V, U, H, S & x) at the start of each process.
b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change
in S) during each leg of the cycle.AH, AU, Q, W, Aentropy
(c) Draw a well-labeled T-S diagram (indicating lines of constant pressure and the saturation dome.)
d) Calculate the coefficient of performance of the cycle
"nglish (United States)
Transcribed Image Text:The working fluid of a liquid-vapor cycle is 1kg of R-134a (Hint: Use the R-134a thermodynamic tables.) The cycle operates between two pressures 100kPa and 1000kPa. Process A-B: An isobaric compression at the high pressure from a saturated vapor to a saturated liquid. • ProcessB-C: An iso-entropic process from the high pressure to the low pressure. • Process C-D: An isobaric expansion at the low pressure. •Process D-A: An iso-entropic process from the low pressure to the high pressure. •a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality factor (T, P, V, U, H, S & x) at the start of each process. b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change in S) during each leg of the cycle.AH, AU, Q, W, Aentropy (c) Draw a well-labeled T-S diagram (indicating lines of constant pressure and the saturation dome.) d) Calculate the coefficient of performance of the cycle "nglish (United States)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

How did you get the values for Sc=Sb and Sa=Sd

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY