The wheels, axle, and handles of a wheelbarrow weigh W = 57 N. The load chamber and its contents weigh W₁ = 563 N. The drawing shows these two forces in two different wheelbarrow designs. To support the wheelbarrow in equilibrium, the man's hands apply a force to the handles that is directed vertically upward. Consider a rotational axis at the point where the tire contacts the ground, directed perpendicular to the plane of the paper. Find the magnitude of the man's force for both designs. F F (a) F= (b) F = i i W W 0.400 m 0.700 m 0.200 m (a) W, W b.600 m 0.700 m (b)
Rigid Body
A rigid body is an object which does not change its shape or undergo any significant deformation due to an external force or movement. Mathematically speaking, the distance between any two points inside the body doesn't change in any situation.
Rigid Body Dynamics
Rigid bodies are defined as inelastic shapes with negligible deformation, giving them an unchanging center of mass. It is also generally assumed that the mass of a rigid body is uniformly distributed. This property of rigid bodies comes in handy when we deal with concepts like momentum, angular momentum, force and torque. The study of these properties – viz., force, torque, momentum, and angular momentum – of a rigid body, is collectively known as rigid body dynamics (RBD).


Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images









