The velocity of a particle on the time interval 1 ≤ x ≤ 4 is v(x) = e²x, where v(x) is in cm/s. What is the average velocity for the interval? O 375.645 396.426 O 475.536 O 495.595 T

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please explain how to solve, thank you!

### Average Velocity Calculation

#### Problem Statement:
The velocity of a particle on the time interval \(1 \leq x \leq 4\) is \( v(x) = e^{2x} \), where \( v(x) \) is in cm/s. 

**Question:**
What is the average velocity for the interval?

#### Options:
```
○ 375.645
○ 396.426
○ 475.536
○ 495.595
```

#### Explanation:
To find the average velocity of the particle over the given interval, we use the formula for average value of a continuous function \(v(x)\) over the interval \([a, b]\):

\[ \text{Average velocity} = \frac{1}{b - a} \int_{a}^{b} v(x) \, dx \]

For this problem:
- \( a = 1 \)
- \( b = 4 \)
- \( v(x) = e^{2x} \)

Therefore, we need to calculate the following integral:

\[ \text{Average velocity} = \frac{1}{4 - 1} \int_{1}^{4} e^{2x} \, dx = \frac{1}{3} \int_{1}^{4} e^{2x} \, dx \]

Calculating the integral:

1. \[ \int e^{2x} \, dx \]
   Substitute \(u = 2x\), then \(du = 2dx\), and \(dx = \frac{du}{2}\):

   \[ \int e^{2x} \, dx = \frac{1}{2} \int e^{u} \, du = \frac{1}{2} e^{u}\]

   Substitute back \(u = 2x\):

   \[ \int e^{2x} \, dx = \frac{1}{2} e^{2x} + C \]

2. Evaluate the definite integral \(\int_{1}^{4} e^{2x} \, dx\):

   \[ \int_{1}^{4} e^{2x} \, dx = \left[ \frac{1}{2} e^{2x} \right]_{1}^{4} = \frac{1}{2} (e^{8} - e^{2}) \]

3.
Transcribed Image Text:### Average Velocity Calculation #### Problem Statement: The velocity of a particle on the time interval \(1 \leq x \leq 4\) is \( v(x) = e^{2x} \), where \( v(x) \) is in cm/s. **Question:** What is the average velocity for the interval? #### Options: ``` ○ 375.645 ○ 396.426 ○ 475.536 ○ 495.595 ``` #### Explanation: To find the average velocity of the particle over the given interval, we use the formula for average value of a continuous function \(v(x)\) over the interval \([a, b]\): \[ \text{Average velocity} = \frac{1}{b - a} \int_{a}^{b} v(x) \, dx \] For this problem: - \( a = 1 \) - \( b = 4 \) - \( v(x) = e^{2x} \) Therefore, we need to calculate the following integral: \[ \text{Average velocity} = \frac{1}{4 - 1} \int_{1}^{4} e^{2x} \, dx = \frac{1}{3} \int_{1}^{4} e^{2x} \, dx \] Calculating the integral: 1. \[ \int e^{2x} \, dx \] Substitute \(u = 2x\), then \(du = 2dx\), and \(dx = \frac{du}{2}\): \[ \int e^{2x} \, dx = \frac{1}{2} \int e^{u} \, du = \frac{1}{2} e^{u}\] Substitute back \(u = 2x\): \[ \int e^{2x} \, dx = \frac{1}{2} e^{2x} + C \] 2. Evaluate the definite integral \(\int_{1}^{4} e^{2x} \, dx\): \[ \int_{1}^{4} e^{2x} \, dx = \left[ \frac{1}{2} e^{2x} \right]_{1}^{4} = \frac{1}{2} (e^{8} - e^{2}) \] 3.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning