The van der Waals equation compensates for non-ideal behavior of gases by taking into account intermolecular forces and the volume of the gas molecules. For CO, a = 1.505 L²atm/mol² and b = 0.03985 L/mol. Use the van der Waals equation to determine the pressure, in atmospheres, of 2.00 moles of CO gas in a 3.00 L flask at 25.0 °C. Remember the gas constant, R, is 0.08206 L.atm/mol.K. P+a (V - nb) = nRT
The van der Waals equation compensates for non-ideal behavior of gases by taking into account intermolecular forces and the volume of the gas molecules. For CO, a = 1.505 L²atm/mol² and b = 0.03985 L/mol. Use the van der Waals equation to determine the pressure, in atmospheres, of 2.00 moles of CO gas in a 3.00 L flask at 25.0 °C. Remember the gas constant, R, is 0.08206 L.atm/mol.K. P+a (V - nb) = nRT
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![**Question:**
Use the ideal gas law to determine the pressure, in atmospheres, of 2.00 moles of CO gas in a 3.00 L flask at 25.0 °C.
**Explanation:**
To solve this problem, we use the Ideal Gas Law equation:
\[ PV = nRT \]
Where:
- \( P \) is the pressure in atmospheres (atm)
- \( V \) is the volume in liters (L)
- \( n \) is the number of moles of gas
- \( R \) is the ideal gas constant, \( 0.0821 \, \text{L atm/mol K} \)
- \( T \) is the temperature in Kelvin (K)
First, convert the temperature from Celsius to Kelvin:
\[ 25.0 \, °C + 273.15 = 298.15 \, \text{K} \]
Now, substitute the known values into the equation:
\[ P \times 3.00 \, \text{L} = 2.00 \, \text{moles} \times 0.0821 \, \text{L atm/mol K} \times 298.15 \, \text{K} \]
Solve for \( P \):
\[ P = \frac{2.00 \times 0.0821 \times 298.15}{3.00} \]
Calculate \( P \) for the final answer.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2c653cb9-ab7a-49e3-bea3-1c34e4b2ce5f%2Fa7842d5e-6583-4b67-9b45-a4b8ec4eb6d5%2Fppnzb8i_processed.png&w=3840&q=75)
Transcribed Image Text:**Question:**
Use the ideal gas law to determine the pressure, in atmospheres, of 2.00 moles of CO gas in a 3.00 L flask at 25.0 °C.
**Explanation:**
To solve this problem, we use the Ideal Gas Law equation:
\[ PV = nRT \]
Where:
- \( P \) is the pressure in atmospheres (atm)
- \( V \) is the volume in liters (L)
- \( n \) is the number of moles of gas
- \( R \) is the ideal gas constant, \( 0.0821 \, \text{L atm/mol K} \)
- \( T \) is the temperature in Kelvin (K)
First, convert the temperature from Celsius to Kelvin:
\[ 25.0 \, °C + 273.15 = 298.15 \, \text{K} \]
Now, substitute the known values into the equation:
\[ P \times 3.00 \, \text{L} = 2.00 \, \text{moles} \times 0.0821 \, \text{L atm/mol K} \times 298.15 \, \text{K} \]
Solve for \( P \):
\[ P = \frac{2.00 \times 0.0821 \times 298.15}{3.00} \]
Calculate \( P \) for the final answer.
![**Understanding the van der Waals Equation**
The van der Waals equation compensates for non-ideal behavior of gases by incorporating intermolecular forces and the volume of gas molecules into calculations. This adjustment provides a more accurate description of real gases compared to the ideal gas law.
**Example Calculation with Carbon Monoxide (CO)**
- For CO, the constants are:
- \( a = 1.505 \, \text{L}^2\text{atm/mol}^2 \)
- \( b = 0.03985 \, \text{L/mol} \)
- Task: Use the van der Waals equation to determine the pressure, in atmospheres, of 2.00 moles of CO gas in a 3.00 L flask at 25.0 °C.
- Remember: The gas constant \( R \) is 0.08206 L·atm/mol·K.
**Van der Waals Equation**
\[ \left( P + a \left( \frac{n}{V} \right)^2 \right) (V - nb) = nRT \]
**Explanation of the Components**
- \( P \): Pressure of the gas
- \( V \): Volume of the container
- \( n \): Moles of gas
- \( T \): Temperature in Kelvin
- \( R \): Ideal gas constant
- \( a \) and \( b \): van der Waals constants specific to each gas
This equation modifies the ideal gas law to enable more precise calculations for gases that do not behave ideally, by accounting for molecular interactions and finite molecular sizes.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2c653cb9-ab7a-49e3-bea3-1c34e4b2ce5f%2Fa7842d5e-6583-4b67-9b45-a4b8ec4eb6d5%2Fsz0gn2_processed.png&w=3840&q=75)
Transcribed Image Text:**Understanding the van der Waals Equation**
The van der Waals equation compensates for non-ideal behavior of gases by incorporating intermolecular forces and the volume of gas molecules into calculations. This adjustment provides a more accurate description of real gases compared to the ideal gas law.
**Example Calculation with Carbon Monoxide (CO)**
- For CO, the constants are:
- \( a = 1.505 \, \text{L}^2\text{atm/mol}^2 \)
- \( b = 0.03985 \, \text{L/mol} \)
- Task: Use the van der Waals equation to determine the pressure, in atmospheres, of 2.00 moles of CO gas in a 3.00 L flask at 25.0 °C.
- Remember: The gas constant \( R \) is 0.08206 L·atm/mol·K.
**Van der Waals Equation**
\[ \left( P + a \left( \frac{n}{V} \right)^2 \right) (V - nb) = nRT \]
**Explanation of the Components**
- \( P \): Pressure of the gas
- \( V \): Volume of the container
- \( n \): Moles of gas
- \( T \): Temperature in Kelvin
- \( R \): Ideal gas constant
- \( a \) and \( b \): van der Waals constants specific to each gas
This equation modifies the ideal gas law to enable more precise calculations for gases that do not behave ideally, by accounting for molecular interactions and finite molecular sizes.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY