The value of a sports franchise is directly related to the amount of revenue that a franchise can generate. The following data represents the value in 2014 (in $millions) and the annual revenue (in $millions) for the 30 Major League Baseball franchises. Suppose you want to develop a simple linear regression model to predict franchise value based on annual revenue generated.          Team  Revenue  Value  Baltimore  245  1000  Boston  370  2100  Chicago White Sox  227  975  Cleveland  207  825  Detroit  254  1125  Houston  175  800  Kansas City  231  700  Los Angeles Angels  304  1300  Minnesota  223  895  New York Yankees  508  3200  Oakland  202  725  Seattle  250  1100  Tampa Bay  188  625  Texas  266  1220  Toronto  226  870  Arizona  211  840  Atlanta  267  1150  Chicago Cubs  302  1800  Cincinnati  227  885  Colorado  214  855  Los Angeles Dodgers  403  2400  Miami  188  650  Milwaukee  226  875  New York Mets  263  1350  Philadelphia  265  1250  Pittsburgh  229  900  St. Louis  294  1400  San Diego  225  890  San Francisco  387  2000  Washington  287  1280          Hint: Copy and paste the data to Excel, on the Data tab, click Data Analysis and select Regression.  Construct a scatter plot in Excel.  Write the simple linear regression equation and interpret the meaning of  b0b0  and  b1b1  in this problem.  Determine the coefficient of determination,  r2r2 , and interpret its meaning.  At the 0.05 level of significance, is there evidence of a linear relationship between annual revenue and franchise value?  What is the 95% confidence interval for the mean value of a baseball franchise that generates $250 million of annual revenue?  What is the 95% prediction interval for a baseball franchise that generates $250 million of annual revenue?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

 

 

  1. The value of a sports franchise is directly related to the amount of revenue that a franchise can generate. The following data represents the value in 2014 (in $millions) and the annual revenue (in $millions) for the 30 Major League Baseball franchises. Suppose you want to develop a simple linear regression model to predict franchise value based on annual revenue generated. 

 

 

 

 

Team 

Revenue 

Value 

Baltimore 

245 

1000 

Boston 

370 

2100 

Chicago White Sox 

227 

975 

Cleveland 

207 

825 

Detroit 

254 

1125 

Houston 

175 

800 

Kansas City 

231 

700 

Los Angeles Angels 

304 

1300 

Minnesota 

223 

895 

New York Yankees 

508 

3200 

Oakland 

202 

725 

Seattle 

250 

1100 

Tampa Bay 

188 

625 

Texas 

266 

1220 

Toronto 

226 

870 

Arizona 

211 

840 

Atlanta 

267 

1150 

Chicago Cubs 

302 

1800 

Cincinnati 

227 

885 

Colorado 

214 

855 

Los Angeles Dodgers 

403 

2400 

Miami 

188 

650 

Milwaukee 

226 

875 

New York Mets 

263 

1350 

Philadelphia 

265 

1250 

Pittsburgh 

229 

900 

St. Louis 

294 

1400 

San Diego 

225 

890 

San Francisco 

387 

2000 

Washington 

287 

1280 

 

 

 

 

Hint: Copy and paste the data to Excel, on the Data tab, click Data Analysis and select Regression

  1. Construct a scatter plot in Excel. 
    1. Write the simple linear regression equation and interpret the meaning of 

b0b0

    1.  and 

b1b1

  1.  in this problem. 
    1. Determine the coefficient of determination, 

r2r2

  1. , and interpret its meaning. 
  1. At the 0.05 level of significance, is there evidence of a linear relationship between annual revenue and franchise value? 
  1. What is the 95% confidence interval for the mean value of a baseball franchise that generates $250 million of annual revenue? 
  1. What is the 95% prediction interval for a baseball franchise that generates $250 million of annual revenue? 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 7 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman