The Valley Wine Company produces two kinds of wine—Valley Nectar and Valley Red. The wines are produced from 64 tons of grapes the company has acquired this season. A 1,000-gallon batch of Nectar requires 4 tons of grapes, and a batch of Red requires 8 tons. However, production is limited by the availability of only 50 cubic yards of storage space for aging and 120 hours of processing time. A batch of each type of wine requires 5 cubic yards of storage space. The processing time for a batch of Nectar is 15 hours, and the processing time for a batch of Red is 8 hours. Demand for each type of wine is limited to seven batches. The profit for a batch of Nectar is $9,000, and the profit for a batch of Red is $15,000. The company wants to determine the number of 1,000-gallon batches of Nectar (x1) and Red (x2) to produce in order to maximize profit.   Formulate a linear programming model for this problem. (Write down the decision variables’ definition, objective function, and constraints for the linear programming model)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

The Valley Wine Company produces two kinds of wine—Valley Nectar and Valley Red. The wines are produced from 64 tons of grapes the company has acquired this season. A 1,000-gallon batch of Nectar requires 4 tons of grapes, and a batch of Red requires 8 tons. However, production is limited by the availability of only 50 cubic yards of storage space for aging and 120 hours of processing time. A batch of each type of wine requires 5 cubic yards of storage space. The processing time for a batch of Nectar is 15 hours, and the processing time for a batch of Red is 8 hours. Demand for each type of wine is limited to seven batches. The profit for a batch of Nectar is $9,000, and the profit for a batch of Red is $15,000. The company wants to determine the number of 1,000-gallon batches of Nectar (x1) and Red (x2) to produce in order to maximize profit.

 

Formulate a linear programming model for this problem.

(Write down the decision variables’ definition, objective function, and constraints for the linear programming model)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,