The utility company is selling electric power for $0.06/kWh at night, and $0.13/kWh for power produced in the day. Company WaterCO builds a large reservoir 50m above lake level to pump water from the lake to the reservoir at night, and then letting the water flow from the reservoir back into the lake during the day; creating power as a pump-motor operation and a turbine-generator for reverse flow. Here, the water flow rate of 2 m3/s is used in either direction and the irreversible head loss of the piping system is 4m. The combined pump-motor and turbine-generator efficiencies are 80% each. If the system operates for 10 hours each in the pump and turbine modes during a normal day, what is the potential revenue this pump-turbine system can generate per year?
The utility company is selling electric power for $0.06/kWh at night, and $0.13/kWh for power produced in the day. Company WaterCO builds a large reservoir 50m above lake level to pump water from the lake to the reservoir at night, and then letting the water flow from the reservoir back into the lake during the day; creating power as a pump-motor operation and a turbine-generator for reverse flow. Here, the water flow rate of 2 m3/s is used in either direction and the irreversible head loss of the piping system is 4m. The combined pump-motor and turbine-generator efficiencies are 80% each. If the system operates for 10 hours each in the pump and turbine modes during a normal day, what is the potential revenue this pump-turbine system can generate per year?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps