The two cars, A, and B, collided at right angles at the intersection. During the collision, the cars became entangled (AB) and moved off together to bump into a huge old tree. Calculate the velocity (km/h) of car B just before the collision with car A at the intersection. Right after bumping with the tree, determine the new velocity of the "entangled" cars. Also, compute the percent energy lost from the cars after the two collisions occurred. Neglect the geometry of the cars before and after the collision. Coefficient of restitution between the entangled cars (AB) and the tree (C), E.BC = 0.18

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
30
mg = 1600 kg
ma = 1200 kg
VA1 = 50 km/h
V81 = ?
The two cars, A, and B, collided at right angles at the intersection. During the collision, the cars
became entangled (AB) and moved off together to bump into a huge old tree. Calculate the
velocity (km/h) of car B just before the collision with car A at the intersection. Right after
bumping with the tree, determine the new velocity of the "entangled" cars. Also, compute the
percent energy lost from the cars after the two collisions occurred. Neglect the geometry of the
cars before and after the collision. Coefficient of restitution between the entangled cars (AB) and
the tree (C), e43c = 0.18
Transcribed Image Text:30 mg = 1600 kg ma = 1200 kg VA1 = 50 km/h V81 = ? The two cars, A, and B, collided at right angles at the intersection. During the collision, the cars became entangled (AB) and moved off together to bump into a huge old tree. Calculate the velocity (km/h) of car B just before the collision with car A at the intersection. Right after bumping with the tree, determine the new velocity of the "entangled" cars. Also, compute the percent energy lost from the cars after the two collisions occurred. Neglect the geometry of the cars before and after the collision. Coefficient of restitution between the entangled cars (AB) and the tree (C), e43c = 0.18
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY