The tungsten filament of an incandescent light bulb has a temperature of approximately 3000 K. The emissivity of tungsten is approximately 1/3, and you may assume that it is independent of wavelength. Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695 K.
The tungsten filament of an incandescent light bulb has a temperature of approximately 3000 K. The emissivity of tungsten is approximately 1/3, and you may assume that it is independent of wavelength. Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695 K.
Related questions
Question
The tungsten filament of an incandescent light bulb has a temperature of approximately 3000 K. The emissivity of tungsten is approximately 1/3, and you may assume that it is independent of wavelength.
Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695 K.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 70 images