The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as he can with a hop, step, and jump. Shown in the figure is the initial hop of the athlete. Assuming that he approaches the takeoff line from the left with a horizontal velocity of 10 m/s, remains in contact with the ground for 0.18 s, and takes off at a 52° angle with a velocity of 12.4 m/s, determine the vertical component of the average impulsive force exerted by the ground on his foot. Give your answer in terms of the weight W of the athlete.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as he can with a hop, step, and
jump. Shown in the figure is the initial hop of the athlete. Assuming that he approaches the takeoff line from the left with a horizontal
velocity of 10 m/s, remains in contact with the ground for 0.18 s, and takes off at a 52° angle with a velocity of 12.4 m/s, determine the
vertical component of the average impulsive force exerted by the ground on his foot. Give your answer in terms of the weight W of the
athlete.
V
10 m/s
Take-
off line
The vertical component of the average impulsive force is
W.
Transcribed Image Text:The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as he can with a hop, step, and jump. Shown in the figure is the initial hop of the athlete. Assuming that he approaches the takeoff line from the left with a horizontal velocity of 10 m/s, remains in contact with the ground for 0.18 s, and takes off at a 52° angle with a velocity of 12.4 m/s, determine the vertical component of the average impulsive force exerted by the ground on his foot. Give your answer in terms of the weight W of the athlete. V 10 m/s Take- off line The vertical component of the average impulsive force is W.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Basic Terminology in Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY