The transistor shown in Figure B2 has parameters VTN = 0.4 V, K₂ = 0.4 mA/V², and λ = 0. The transistor is biased at 1pq = 0.8 mA. V₁0- V+ = 2.5 V RD= 1kQ2 Figure B2 1. Draw the small-signal equivalent circuit of the circuit. 2. Determine the maximum small-signal voltage gain. 3. Determine the corner frequency of the circuit. o Vo C₁ = 1 pF

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
The transistor shown in Figure B2 has parameters VTN = 0.4 V, K₂ = 0.4 mA/V², and λ = 0. The
transistor is biased at Ipq = 0.8 mA.
1.
V₁0-
Draw the small-signal equivalent circuit of the circuit.
2. Determine the maximum small-signal voltage gain.
Physical Constants &
q=1.602 x 10-19 C
a = 8.854 x 10-¹2 F/m
kB = 1.380 x 10-23 J/K
me = 9.109 x 10-3¹ kg
1 μm = 1 x 10 m
&-Si= 11,7
3. Determine the corner frequency of the circuit.
n, = BT ³/22k7
4. Draw the bode plot of the circuit. The maximum voltage gain (in dB) and corner frequency should
be included.
J₁ = eD₂
V+ = 2.5 V
Drift and Diffusion Currents
J=oE= (1/p)E
dn
dx
Vs
RD=
1kQ
Semiconductor Properties
p-n Junction and Diode Circuits
Vu - KeTmNAND)
Vb =
10 = 1 [exp(27)-1]
V₁N₁
N₂
=
Figure B2
Eg-Si= 1.1 eV
Eg-GaAs = 1.4 eV
Eg-Ge=0.66 eV
nsi = 1.45 x 10¹0 cm3
1 nm 1 x 10⁹ m
d
photocurrent:
Formula Sheet
Box (3.9) x (8.854 x 10-12) F/m
=
n = n.p
V, =
2 fRC
MOS Capacitor and MOSFETS
V=V₂ Ir
source regulation and load regulation:
o enfle + epflh
dp
Jp =-eDp
dx
where f =
-V, In ( NAND)
=
Bsi 5.23 x 10¹5 cm-³ K-3/2
BGaAs = 2.10 x 10¹4 cm³ K-3/2
BGe 1.66 x 10¹5 cm³ K-3/2
μe-si = 1400 cm² V-¹ s-¹
1 pm = 1 x 10-¹2 m
- Vo
C₁ = 1 pF
C =
1
2TP
AVLX100%
AVFS
Ex A
10x
Iph = neDA
C.
√H
1+
V
10 = 1, [exp(-/-)-1]
C₁ =
D_Dr_k₂T
H₂ Hp
=
V₂
μh-Si= 450 cm² V-1 S-1
1 fm = 1 x 10-15 m
VL,no load VL, full load
VL, full lood
Thermal Voltage VT = 0.026 V
Cut-in Voltage V₂ = 0.7 V
Cas
q
-x 100%
Eax
1ax
Transcribed Image Text:The transistor shown in Figure B2 has parameters VTN = 0.4 V, K₂ = 0.4 mA/V², and λ = 0. The transistor is biased at Ipq = 0.8 mA. 1. V₁0- Draw the small-signal equivalent circuit of the circuit. 2. Determine the maximum small-signal voltage gain. Physical Constants & q=1.602 x 10-19 C a = 8.854 x 10-¹2 F/m kB = 1.380 x 10-23 J/K me = 9.109 x 10-3¹ kg 1 μm = 1 x 10 m &-Si= 11,7 3. Determine the corner frequency of the circuit. n, = BT ³/22k7 4. Draw the bode plot of the circuit. The maximum voltage gain (in dB) and corner frequency should be included. J₁ = eD₂ V+ = 2.5 V Drift and Diffusion Currents J=oE= (1/p)E dn dx Vs RD= 1kQ Semiconductor Properties p-n Junction and Diode Circuits Vu - KeTmNAND) Vb = 10 = 1 [exp(27)-1] V₁N₁ N₂ = Figure B2 Eg-Si= 1.1 eV Eg-GaAs = 1.4 eV Eg-Ge=0.66 eV nsi = 1.45 x 10¹0 cm3 1 nm 1 x 10⁹ m d photocurrent: Formula Sheet Box (3.9) x (8.854 x 10-12) F/m = n = n.p V, = 2 fRC MOS Capacitor and MOSFETS V=V₂ Ir source regulation and load regulation: o enfle + epflh dp Jp =-eDp dx where f = -V, In ( NAND) = Bsi 5.23 x 10¹5 cm-³ K-3/2 BGaAs = 2.10 x 10¹4 cm³ K-3/2 BGe 1.66 x 10¹5 cm³ K-3/2 μe-si = 1400 cm² V-¹ s-¹ 1 pm = 1 x 10-¹2 m - Vo C₁ = 1 pF C = 1 2TP AVLX100% AVFS Ex A 10x Iph = neDA C. √H 1+ V 10 = 1, [exp(-/-)-1] C₁ = D_Dr_k₂T H₂ Hp = V₂ μh-Si= 450 cm² V-1 S-1 1 fm = 1 x 10-15 m VL,no load VL, full load VL, full lood Thermal Voltage VT = 0.026 V Cut-in Voltage V₂ = 0.7 V Cas q -x 100% Eax 1ax
NMOS
Nonsaturation region (ups < ups (sat))
iD = K[2(UGS - VTN)UDS - VDS]
Saturation region (Ups > Ups(sat))
ip = K₁(VGS - VTN)²
Transition point
VDs (sat) = UGS - VTN
Enhancement mode
VTN >0
Depletion mode
VTN<0
K.=+H.C. (H)=+*: (7)
K₂
k
T =
1-1-²-2) -
di D
3) L = [2K (Vasq - VIN)²]*¹ = [2]¹
ON DS
1-poin
i Dar = K₂ (VGs - VIN) ² (1+2VDS)
V₂N =V₂NO+Y(√20, +V'S = √20₁)
= 2K (Vas -VTN) = 2√ √K₂1DQ
ic = IseVBE/VT
¡E = ¹ = ³/VT
iB ==
/Vr
For both transistors
ig=ic + ig
ig = (1+B)iB
α = 1
Bipolar Junction Transistor (BJT)
Summary of the bipolar current-voltage relationships in the active region
NPN
PNP
ic Is exp
, exp (* * *)(1+² =)
V₁B
la
PMOS
Nonsaturation region (USD < Usp (sat))
iD = Kp[2(USG + VTP) USD - USD]
Saturation region (VSD > USD (sat))
ip = K₂(USG + VTP)²
Transition point
VSD (sat) = USG + VTP
Enhancement mode
VTP < 0
Depletion mode
VTP > 0
K‚= ‡μ‚C« (H) = + *; (H)
la
ic=
¡E = ¹ =
iB = 1 =
Iseva/VT
¹/V₂
²¹/V₂
ic = BiB
ic = αig = (+)ie
ß = 12
ro
10
Transcribed Image Text:NMOS Nonsaturation region (ups < ups (sat)) iD = K[2(UGS - VTN)UDS - VDS] Saturation region (Ups > Ups(sat)) ip = K₁(VGS - VTN)² Transition point VDs (sat) = UGS - VTN Enhancement mode VTN >0 Depletion mode VTN<0 K.=+H.C. (H)=+*: (7) K₂ k T = 1-1-²-2) - di D 3) L = [2K (Vasq - VIN)²]*¹ = [2]¹ ON DS 1-poin i Dar = K₂ (VGs - VIN) ² (1+2VDS) V₂N =V₂NO+Y(√20, +V'S = √20₁) = 2K (Vas -VTN) = 2√ √K₂1DQ ic = IseVBE/VT ¡E = ¹ = ³/VT iB == /Vr For both transistors ig=ic + ig ig = (1+B)iB α = 1 Bipolar Junction Transistor (BJT) Summary of the bipolar current-voltage relationships in the active region NPN PNP ic Is exp , exp (* * *)(1+² =) V₁B la PMOS Nonsaturation region (USD < Usp (sat)) iD = Kp[2(USG + VTP) USD - USD] Saturation region (VSD > USD (sat)) ip = K₂(USG + VTP)² Transition point VSD (sat) = USG + VTP Enhancement mode VTP < 0 Depletion mode VTP > 0 K‚= ‡μ‚C« (H) = + *; (H) la ic= ¡E = ¹ = iB = 1 = Iseva/VT ¹/V₂ ²¹/V₂ ic = BiB ic = αig = (+)ie ß = 12 ro 10
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
h and g parameter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,