The transistor shown in Figure B2 has parameters VTN = 0.4 V, K₂ = 0.4 mA/V², and λ = 0. The transistor is biased at 1pq = 0.8 mA. V₁0- V+ = 2.5 V RD= 1kQ2 Figure B2 1. Draw the small-signal equivalent circuit of the circuit. 2. Determine the maximum small-signal voltage gain. 3. Determine the corner frequency of the circuit. o Vo C₁ = 1 pF

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
The transistor shown in Figure B2 has parameters VTN = 0.4 V, K₂ = 0.4 mA/V², and λ = 0. The
transistor is biased at Ipq = 0.8 mA.
1.
V₁0-
Draw the small-signal equivalent circuit of the circuit.
2. Determine the maximum small-signal voltage gain.
Physical Constants &
q=1.602 x 10-19 C
a = 8.854 x 10-¹2 F/m
kB = 1.380 x 10-23 J/K
me = 9.109 x 10-3¹ kg
1 μm = 1 x 10 m
&-Si= 11,7
3. Determine the corner frequency of the circuit.
n, = BT ³/22k7
4. Draw the bode plot of the circuit. The maximum voltage gain (in dB) and corner frequency should
be included.
J₁ = eD₂
V+ = 2.5 V
Drift and Diffusion Currents
J=oE= (1/p)E
dn
dx
Vs
RD=
1kQ
Semiconductor Properties
p-n Junction and Diode Circuits
Vu - KeTmNAND)
Vb =
10 = 1 [exp(27)-1]
V₁N₁
N₂
=
Figure B2
Eg-Si= 1.1 eV
Eg-GaAs = 1.4 eV
Eg-Ge=0.66 eV
nsi = 1.45 x 10¹0 cm3
1 nm 1 x 10⁹ m
d
photocurrent:
Formula Sheet
Box (3.9) x (8.854 x 10-12) F/m
=
n = n.p
V, =
2 fRC
MOS Capacitor and MOSFETS
V=V₂ Ir
source regulation and load regulation:
o enfle + epflh
dp
Jp =-eDp
dx
where f =
-V, In ( NAND)
=
Bsi 5.23 x 10¹5 cm-³ K-3/2
BGaAs = 2.10 x 10¹4 cm³ K-3/2
BGe 1.66 x 10¹5 cm³ K-3/2
μe-si = 1400 cm² V-¹ s-¹
1 pm = 1 x 10-¹2 m
- Vo
C₁ = 1 pF
C =
1
2TP
AVLX100%
AVFS
Ex A
10x
Iph = neDA
C.
√H
1+
V
10 = 1, [exp(-/-)-1]
C₁ =
D_Dr_k₂T
H₂ Hp
=
V₂
μh-Si= 450 cm² V-1 S-1
1 fm = 1 x 10-15 m
VL,no load VL, full load
VL, full lood
Thermal Voltage VT = 0.026 V
Cut-in Voltage V₂ = 0.7 V
Cas
q
-x 100%
Eax
1ax
Transcribed Image Text:The transistor shown in Figure B2 has parameters VTN = 0.4 V, K₂ = 0.4 mA/V², and λ = 0. The transistor is biased at Ipq = 0.8 mA. 1. V₁0- Draw the small-signal equivalent circuit of the circuit. 2. Determine the maximum small-signal voltage gain. Physical Constants & q=1.602 x 10-19 C a = 8.854 x 10-¹2 F/m kB = 1.380 x 10-23 J/K me = 9.109 x 10-3¹ kg 1 μm = 1 x 10 m &-Si= 11,7 3. Determine the corner frequency of the circuit. n, = BT ³/22k7 4. Draw the bode plot of the circuit. The maximum voltage gain (in dB) and corner frequency should be included. J₁ = eD₂ V+ = 2.5 V Drift and Diffusion Currents J=oE= (1/p)E dn dx Vs RD= 1kQ Semiconductor Properties p-n Junction and Diode Circuits Vu - KeTmNAND) Vb = 10 = 1 [exp(27)-1] V₁N₁ N₂ = Figure B2 Eg-Si= 1.1 eV Eg-GaAs = 1.4 eV Eg-Ge=0.66 eV nsi = 1.45 x 10¹0 cm3 1 nm 1 x 10⁹ m d photocurrent: Formula Sheet Box (3.9) x (8.854 x 10-12) F/m = n = n.p V, = 2 fRC MOS Capacitor and MOSFETS V=V₂ Ir source regulation and load regulation: o enfle + epflh dp Jp =-eDp dx where f = -V, In ( NAND) = Bsi 5.23 x 10¹5 cm-³ K-3/2 BGaAs = 2.10 x 10¹4 cm³ K-3/2 BGe 1.66 x 10¹5 cm³ K-3/2 μe-si = 1400 cm² V-¹ s-¹ 1 pm = 1 x 10-¹2 m - Vo C₁ = 1 pF C = 1 2TP AVLX100% AVFS Ex A 10x Iph = neDA C. √H 1+ V 10 = 1, [exp(-/-)-1] C₁ = D_Dr_k₂T H₂ Hp = V₂ μh-Si= 450 cm² V-1 S-1 1 fm = 1 x 10-15 m VL,no load VL, full load VL, full lood Thermal Voltage VT = 0.026 V Cut-in Voltage V₂ = 0.7 V Cas q -x 100% Eax 1ax
NMOS
Nonsaturation region (ups < ups (sat))
iD = K[2(UGS - VTN)UDS - VDS]
Saturation region (Ups > Ups(sat))
ip = K₁(VGS - VTN)²
Transition point
VDs (sat) = UGS - VTN
Enhancement mode
VTN >0
Depletion mode
VTN<0
K.=+H.C. (H)=+*: (7)
K₂
k
T =
1-1-²-2) -
di D
3) L = [2K (Vasq - VIN)²]*¹ = [2]¹
ON DS
1-poin
i Dar = K₂ (VGs - VIN) ² (1+2VDS)
V₂N =V₂NO+Y(√20, +V'S = √20₁)
= 2K (Vas -VTN) = 2√ √K₂1DQ
ic = IseVBE/VT
¡E = ¹ = ³/VT
iB ==
/Vr
For both transistors
ig=ic + ig
ig = (1+B)iB
α = 1
Bipolar Junction Transistor (BJT)
Summary of the bipolar current-voltage relationships in the active region
NPN
PNP
ic Is exp
, exp (* * *)(1+² =)
V₁B
la
PMOS
Nonsaturation region (USD < Usp (sat))
iD = Kp[2(USG + VTP) USD - USD]
Saturation region (VSD > USD (sat))
ip = K₂(USG + VTP)²
Transition point
VSD (sat) = USG + VTP
Enhancement mode
VTP < 0
Depletion mode
VTP > 0
K‚= ‡μ‚C« (H) = + *; (H)
la
ic=
¡E = ¹ =
iB = 1 =
Iseva/VT
¹/V₂
²¹/V₂
ic = BiB
ic = αig = (+)ie
ß = 12
ro
10
Transcribed Image Text:NMOS Nonsaturation region (ups < ups (sat)) iD = K[2(UGS - VTN)UDS - VDS] Saturation region (Ups > Ups(sat)) ip = K₁(VGS - VTN)² Transition point VDs (sat) = UGS - VTN Enhancement mode VTN >0 Depletion mode VTN<0 K.=+H.C. (H)=+*: (7) K₂ k T = 1-1-²-2) - di D 3) L = [2K (Vasq - VIN)²]*¹ = [2]¹ ON DS 1-poin i Dar = K₂ (VGs - VIN) ² (1+2VDS) V₂N =V₂NO+Y(√20, +V'S = √20₁) = 2K (Vas -VTN) = 2√ √K₂1DQ ic = IseVBE/VT ¡E = ¹ = ³/VT iB == /Vr For both transistors ig=ic + ig ig = (1+B)iB α = 1 Bipolar Junction Transistor (BJT) Summary of the bipolar current-voltage relationships in the active region NPN PNP ic Is exp , exp (* * *)(1+² =) V₁B la PMOS Nonsaturation region (USD < Usp (sat)) iD = Kp[2(USG + VTP) USD - USD] Saturation region (VSD > USD (sat)) ip = K₂(USG + VTP)² Transition point VSD (sat) = USG + VTP Enhancement mode VTP < 0 Depletion mode VTP > 0 K‚= ‡μ‚C« (H) = + *; (H) la ic= ¡E = ¹ = iB = 1 = Iseva/VT ¹/V₂ ²¹/V₂ ic = BiB ic = αig = (+)ie ß = 12 ro 10
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
h and g parameter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,