The trajectory of an object moving in the xy-plane is governed by the system of first order ordinary differential equations dx dy = x – 2y dt = -Y, dt with general solution x(t) y(t) ) -« (1). = aj et + a2 (a) Sketch a phase portrait of the system near the critical point at the origin. You should include the following in your sketch, and explain your reasoning to justify your conclusions: • any straight line orbits and their directions; • at least 4 other orbits and their directions, showing the asymptotic behaviour as t → 0 andt → -0o; • the slopes at which the orbits cross the x and y axes; • the velocity vector at (1,1). (b) What is the type and stability of the critical point for this system? (c) Consider the initial conditions x(0) = 0 and y(0) = -1: • solve the system using Laplace transforms; • determine the object's location at time t = 10.
The trajectory of an object moving in the xy-plane is governed by the system of first order ordinary differential equations dx dy = x – 2y dt = -Y, dt with general solution x(t) y(t) ) -« (1). = aj et + a2 (a) Sketch a phase portrait of the system near the critical point at the origin. You should include the following in your sketch, and explain your reasoning to justify your conclusions: • any straight line orbits and their directions; • at least 4 other orbits and their directions, showing the asymptotic behaviour as t → 0 andt → -0o; • the slopes at which the orbits cross the x and y axes; • the velocity vector at (1,1). (b) What is the type and stability of the critical point for this system? (c) Consider the initial conditions x(0) = 0 and y(0) = -1: • solve the system using Laplace transforms; • determine the object's location at time t = 10.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
Step 1
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,