The top surface of a rectangular workpart is machined using a peripheral milling operation. The workpart is 735 mm long by 50 mm wide by 95 mm thick. The milling cutter, which is 60 mm in diameter and has five teeth, overhangs the width of the part equally on both sides. Cutting speed = 80 m/min, chip load = 0.30 mm/tooth, and depth of cut = 7.5 mm. (a) Determine the time required to make one pass acrss the surface, given that the setup and machine settings provide an approach distance of 5 mm before actual cutting begins and an overtravel distance of 25 mm after actual cutting has finished v in seconds. (b) What is the maximum material removal rate during the cut v in mm /sec?
The top surface of a rectangular workpart is machined using a peripheral milling operation. The workpart is 735 mm long by 50 mm wide by 95 mm thick. The milling cutter, which is 60 mm in diameter and has five teeth, overhangs the width of the part equally on both sides. Cutting speed = 80 m/min, chip load = 0.30 mm/tooth, and depth of cut = 7.5 mm. (a) Determine the time required to make one pass acrss the surface, given that the setup and machine settings provide an approach distance of 5 mm before actual cutting begins and an overtravel distance of 25 mm after actual cutting has finished v in seconds. (b) What is the maximum material removal rate during the cut v in mm /sec?
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:Expert Q&A
Done
The top surface of a rectangular workpart is machined using a peripheral milling
operation. The workpart is 735 mm long by 50 mm wide by 95 mm thick. The milling
cutter, which is 60 mm in diameter and has five teeth, overhangs the width of the
part equally on both sides. Cutting speed = 80 m/min, chip load = 0.30 mm/tooth,
and depth of cut = 7.5 mm. (a) Determine the time required to make one pass across
the surface, given that the setup and machine settings provide an approach distance
of 5 mm before actual cutting begins and an overtravel distance of 25 mm after
1.2
9.
20
65
73
actual cutting has finished
v in seconds. (b) What is the maximum material
3.9
239
removal rate during the cut
v in mm3/sec?
0.127
5
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY