The time taken by employees at Grace Floral shop to put a bouquet together has a normal distribution with mean 26.4 minutes and standard deviation .8 minutes.   (i)      Find the probability that an employee chosen at random takes between 24.6 and 27.8 minutes to put a bouquet together.             (ii)     12% of employees take more than t minutes to put a bouquet together. (ii) Find the value of t.                                                          I need a bit of help with this question, but I need values from the table provided to be used.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

The time taken by employees at Grace Floral shop to put a bouquet together has a normal distribution with mean 26.4 minutes and standard deviation .8 minutes.

  (i)      Find the probability that an employee chosen at random takes between 24.6 and 27.8 minutes to put a bouquet together.           

 (ii)     12% of employees take more than t minutes to put a bouquet together. (ii) Find the value of t.                                                        

 I need a bit of help with this question, but I need values from the table provided to be used.

BASIC DISTRIBUTIONS AND SIGNIFICANCE TABLES
Table 3
AREAS IN TAIL OF THE NORMAL DISTRIBUTION
The function tabulated is 1- (a) where o lu) is the cumulative distribution function of a
standardised Normal variable u. Thus 1 - bla)- Sa e-u2
du is the probability that a
standa rdised Normal variable selected at random will be greater
-(-)
than a value of u
1-lu)
00
01
02
.03
.04
.05
.06
.0T
08
.09
0.0
D.1
0.2
0.9
5000
.4602
4207
4980
4502
.4168
.3783
-3409
4920
4522
4129
.9745
.4880
.44 83
4090
.3707
.4B40
.4443
.4052
.S600
,3300
.4.801
.4404
.4013
. S632
284
4761
4364
3974
3504
3228
.4721
.4325
.3936
.3557
.3192
-4681
.4286
.3807
4641
.4247
3850
,3403
.3121
.3520
0.4
3446
.3372
.3336
3150
.2843
2514
2208
.1922
.160
0.5
.3005
.3050
.2T09
2380
.2000
.1814
.3015
.2901
2643
2327
.2003
.1762
.2946
.2611
.2296
.2005
.1736
2812
2578
.2266
1917
1711
,2877
2546
2256
1949
.1685
.2810
.2483
-2177
.1894
.1635
.2776
-2451
.2148
0.6
2743
,2676
0.7
2420
.2119
.1841
.2358
.2061
.1788
0.8
0.9
.1611
1502
.1335
1131
.0951
.1539
.1314
1.0
1.1
1.2
1.3
1,4
. 1587
.1357
,1151
0968
.0808
.1515
-1292
.1492
.1271
.1015
0901
.0749
1469
.1251
.1058
.OB85
1446
,1230
.1423
.1210
.1020
.0853
.0708
.1401
.1190
.1005
.0838.
- 0604
.1379
.1170
.0934
.0778
. 1099
.0918
.0764
.1008
0869
0721
. 0823
.0881
1.5
1.6
,0655
.0537
.0436
.0043
.0526
.0427
.0344
.0274
.0630
.0516
.0118
.0618
0505
.0409
0320
(262
O606
.0495
.0401
.0322
.0258
.0582
.0548
1.7 ,0446
1.8
.0485
-0392
- 0314
.0250
-0571
.0475. .0485
.0384
.0559
.D455
.0375
.0350
.0287
-0351
.0281
.0336
-0307
1.9
.268
.0244
.0233
02222 .02169
2.0
2.1
2.2
.02275
.01786
.01390 .01356 .01321
.01072 .01044 .01017
00820 - .00298 .00776
.(2118
.01659
.01287
. 00090 . 00984 .00939 .0o0014 .00689 .00866 .O0842
.00755 . 00734.00714
02068
01618
02018
01578 .01539 .01500.01463
.01970 .01923 .01876
.01831
.01426
.01743 .01700
01255 .01222 .01191
-01160 .01130.01101
2.3
2.4
.O0695 .006T6
.00657
.00139
.00570 . 00554
.00480
-004 02 .00391 .00379 .00388 .00357
2.5
00821
00604 .00587
.00466 .00153 .00440
.00347 .00326 ,00326
.00256 .00248 .00240
.00175
00539 .00523 .00508
.OD494
2.6
2.7
2.8
2.9
.00427 .00415
.000 17 .003 07 .00298 .00289 ,00280 .00272 .00264
.00212
.00154
.00219
015
.00205
.00233 .00226
00169
00199 .00193
00139
0164
3.0
3.1
3.2
3.3
3.4
.00135
.00097
.00069
.00048
.00084
3.5
3.6 .00010
3.7
.OD011
3,8 .00007
3.9
.00005
4.0
.00003
ECIGA
Transcribed Image Text:BASIC DISTRIBUTIONS AND SIGNIFICANCE TABLES Table 3 AREAS IN TAIL OF THE NORMAL DISTRIBUTION The function tabulated is 1- (a) where o lu) is the cumulative distribution function of a standardised Normal variable u. Thus 1 - bla)- Sa e-u2 du is the probability that a standa rdised Normal variable selected at random will be greater -(-) than a value of u 1-lu) 00 01 02 .03 .04 .05 .06 .0T 08 .09 0.0 D.1 0.2 0.9 5000 .4602 4207 4980 4502 .4168 .3783 -3409 4920 4522 4129 .9745 .4880 .44 83 4090 .3707 .4B40 .4443 .4052 .S600 ,3300 .4.801 .4404 .4013 . S632 284 4761 4364 3974 3504 3228 .4721 .4325 .3936 .3557 .3192 -4681 .4286 .3807 4641 .4247 3850 ,3403 .3121 .3520 0.4 3446 .3372 .3336 3150 .2843 2514 2208 .1922 .160 0.5 .3005 .3050 .2T09 2380 .2000 .1814 .3015 .2901 2643 2327 .2003 .1762 .2946 .2611 .2296 .2005 .1736 2812 2578 .2266 1917 1711 ,2877 2546 2256 1949 .1685 .2810 .2483 -2177 .1894 .1635 .2776 -2451 .2148 0.6 2743 ,2676 0.7 2420 .2119 .1841 .2358 .2061 .1788 0.8 0.9 .1611 1502 .1335 1131 .0951 .1539 .1314 1.0 1.1 1.2 1.3 1,4 . 1587 .1357 ,1151 0968 .0808 .1515 -1292 .1492 .1271 .1015 0901 .0749 1469 .1251 .1058 .OB85 1446 ,1230 .1423 .1210 .1020 .0853 .0708 .1401 .1190 .1005 .0838. - 0604 .1379 .1170 .0934 .0778 . 1099 .0918 .0764 .1008 0869 0721 . 0823 .0881 1.5 1.6 ,0655 .0537 .0436 .0043 .0526 .0427 .0344 .0274 .0630 .0516 .0118 .0618 0505 .0409 0320 (262 O606 .0495 .0401 .0322 .0258 .0582 .0548 1.7 ,0446 1.8 .0485 -0392 - 0314 .0250 -0571 .0475. .0485 .0384 .0559 .D455 .0375 .0350 .0287 -0351 .0281 .0336 -0307 1.9 .268 .0244 .0233 02222 .02169 2.0 2.1 2.2 .02275 .01786 .01390 .01356 .01321 .01072 .01044 .01017 00820 - .00298 .00776 .(2118 .01659 .01287 . 00090 . 00984 .00939 .0o0014 .00689 .00866 .O0842 .00755 . 00734.00714 02068 01618 02018 01578 .01539 .01500.01463 .01970 .01923 .01876 .01831 .01426 .01743 .01700 01255 .01222 .01191 -01160 .01130.01101 2.3 2.4 .O0695 .006T6 .00657 .00139 .00570 . 00554 .00480 -004 02 .00391 .00379 .00388 .00357 2.5 00821 00604 .00587 .00466 .00153 .00440 .00347 .00326 ,00326 .00256 .00248 .00240 .00175 00539 .00523 .00508 .OD494 2.6 2.7 2.8 2.9 .00427 .00415 .000 17 .003 07 .00298 .00289 ,00280 .00272 .00264 .00212 .00154 .00219 015 .00205 .00233 .00226 00169 00199 .00193 00139 0164 3.0 3.1 3.2 3.3 3.4 .00135 .00097 .00069 .00048 .00084 3.5 3.6 .00010 3.7 .OD011 3,8 .00007 3.9 .00005 4.0 .00003 ECIGA
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman