The time complexity has to be as less as possible (nlogn or n at best, no n^2). Apply divide and conquer algorithm in the problem. Make sure ALL test cases return expected outputs by providing output screenshots. Hint: Use bisection method / binarySearch Output Format The output contains one line with a single integer: the minimum instability you can achieve modulo 10^9 + 7. Sample Input 0 2 1 1 2 3 4 3 Sample Output 0 30 Sample Input 1 2 2 2 1 4 2 1 5 1 Sample Output 1 40 Sample Input 2 2 5 6 4 6 7 0 1 3 2 0 6 1 6 2 2 Sample Output 2 214 The actual code import java.io.*; import java.util.*; public class Solution { public static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader( new InputStreamReader(System.in) ); String[] parts = br.readLine().trim().split(" "); int l = Integer.parseInt(parts[0]); int w = Integer.parseInt(parts[1]); int d = Integer.parseInt(parts[2]); int[] length_costs = new int[l]; int[] width_costs = new int[w]; int[] depth_costs = new int[d]; for(int i = 0; i < l; i++) { length_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < w; i++) { width_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < d; i++) { depth_costs[i] = Integer.parseInt(br.readLine().trim()); } System.out.println(solve(l,w,d,length_costs,width_costs,depth_costs)); } /* This function solves a test case. Parameters: l : int - # of length cutting points of quatrum cluster w : int - # of width cutting points of quatrum cluster d : int - # of depth cutting points of quatrum cluster length_costs : int[] - list of length cutting point instability factors width_costs : int[] - list of width cutting point instability factors depth_costs : int[] - list of depth cutting point instability factors Returns: An integer indicating the smallest attainable instability after cutting the cluster down to 1 x 1 x 1 cubes */ public static long solve(int l, int w, int d, int[] length_costs, int[] width_costs, int[] depth_costs) { // TODO }
The time complexity has to be as less as possible (nlogn or n at best, no n^2). Apply divide and conquer algorithm in the problem. Make sure ALL test cases return expected outputs by providing output screenshots. Hint: Use bisection method / binarySearch Output Format The output contains one line with a single integer: the minimum instability you can achieve modulo 10^9 + 7. Sample Input 0 2 1 1 2 3 4 3 Sample Output 0 30 Sample Input 1 2 2 2 1 4 2 1 5 1 Sample Output 1 40 Sample Input 2 2 5 6 4 6 7 0 1 3 2 0 6 1 6 2 2 Sample Output 2 214 The actual code import java.io.*; import java.util.*; public class Solution { public static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader( new InputStreamReader(System.in) ); String[] parts = br.readLine().trim().split(" "); int l = Integer.parseInt(parts[0]); int w = Integer.parseInt(parts[1]); int d = Integer.parseInt(parts[2]); int[] length_costs = new int[l]; int[] width_costs = new int[w]; int[] depth_costs = new int[d]; for(int i = 0; i < l; i++) { length_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < w; i++) { width_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < d; i++) { depth_costs[i] = Integer.parseInt(br.readLine().trim()); } System.out.println(solve(l,w,d,length_costs,width_costs,depth_costs)); } /* This function solves a test case. Parameters: l : int - # of length cutting points of quatrum cluster w : int - # of width cutting points of quatrum cluster d : int - # of depth cutting points of quatrum cluster length_costs : int[] - list of length cutting point instability factors width_costs : int[] - list of width cutting point instability factors depth_costs : int[] - list of depth cutting point instability factors Returns: An integer indicating the smallest attainable instability after cutting the cluster down to 1 x 1 x 1 cubes */ public static long solve(int l, int w, int d, int[] length_costs, int[] width_costs, int[] depth_costs) { // TODO }
The time complexity has to be as less as possible (nlogn or n at best, no n^2). Apply divide and conquer algorithm in the problem. Make sure ALL test cases return expected outputs by providing output screenshots. Hint: Use bisection method / binarySearch Output Format The output contains one line with a single integer: the minimum instability you can achieve modulo 10^9 + 7. Sample Input 0 2 1 1 2 3 4 3 Sample Output 0 30 Sample Input 1 2 2 2 1 4 2 1 5 1 Sample Output 1 40 Sample Input 2 2 5 6 4 6 7 0 1 3 2 0 6 1 6 2 2 Sample Output 2 214 The actual code import java.io.*; import java.util.*; public class Solution { public static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader( new InputStreamReader(System.in) ); String[] parts = br.readLine().trim().split(" "); int l = Integer.parseInt(parts[0]); int w = Integer.parseInt(parts[1]); int d = Integer.parseInt(parts[2]); int[] length_costs = new int[l]; int[] width_costs = new int[w]; int[] depth_costs = new int[d]; for(int i = 0; i < l; i++) { length_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < w; i++) { width_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < d; i++) { depth_costs[i] = Integer.parseInt(br.readLine().trim()); } System.out.println(solve(l,w,d,length_costs,width_costs,depth_costs)); } /* This function solves a test case. Parameters: l : int - # of length cutting points of quatrum cluster w : int - # of width cutting points of quatrum cluster d : int - # of depth cutting points of quatrum cluster length_costs : int[] - list of length cutting point instability factors width_costs : int[] - list of width cutting point instability factors depth_costs : int[] - list of depth cutting point instability factors Returns: An integer indicating the smallest attainable instability after cutting the cluster down to 1 x 1 x 1 cubes */ public static long solve(int l, int w, int d, int[] length_costs, int[] width_costs, int[] depth_costs) { // TODO }
Information is present in the screenshot and below. Based on that need help in solving the code for this problem in java. The time complexity has to be as less as possible (nlogn or n at best, no n^2). Apply divide and conquer algorithm in the problem. Make sure ALL test cases return expected outputs by providing output screenshots.
Hint: Use bisection method / binarySearch
Output Format The output contains one line with a single integer: the minimum instability you can achieve modulo 10^9 + 7.
Sample Input 0 2 1 1 2 3 4 3
Sample Output 0 30
Sample Input 1 2 2 2 1 4 2 1 5 1
Sample Output 1 40
Sample Input 2 2 5 6 4 6 7 0 1 3 2 0 6 1 6 2 2
Sample Output 2 214
The actual code
import java.io.*; import java.util.*;
public class Solution { public static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader( new InputStreamReader(System.in) ); String[] parts = br.readLine().trim().split(" "); int l = Integer.parseInt(parts[0]); int w = Integer.parseInt(parts[1]); int d = Integer.parseInt(parts[2]); int[] length_costs = new int[l]; int[] width_costs = new int[w]; int[] depth_costs = new int[d];
for(int i = 0; i < l; i++) { length_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < w; i++) { width_costs[i] = Integer.parseInt(br.readLine().trim()); } for(int i = 0; i < d; i++) { depth_costs[i] = Integer.parseInt(br.readLine().trim()); }
Parameters: l : int - # of length cutting points of quatrum cluster w : int - # of width cutting points of quatrum cluster d : int - # of depth cutting points of quatrum cluster length_costs : int[] - list of length cutting point instability factors width_costs : int[] - list of width cutting point instability factors depth_costs : int[] - list of depth cutting point instability factors
Returns: An integer indicating the smallest attainable instability after cutting the cluster down to 1 x 1 x 1 cubes */ public static long solve(int l, int w, int d, int[] length_costs, int[] width_costs, int[] depth_costs) { // TODO } }
Process or set of rules that allow for the solving of specific, well-defined computational problems through a specific series of commands. This topic is fundamental in computer science, especially with regard to artificial intelligence, databases, graphics, networking, operating systems, and security.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.