The tangent plane to the differentiable function f(x, y) at the point (xo, yo) has the equation z – f (xo, Yo) = fx(xo, Yo)(x – xo) +fy (Xo, Yo)(y – yo). Which of the following is a normal vector to this tangent plane? O<-fx(xo, Yo), - fy (xo» Yo), 1> O O<-f«(xo» Yo), - fy (xo, Yo), f(Xo» Yo)> O

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The tangent plane to the differentiable function f(X, y) at the point (xo, yo) has
the equation
z – f(xo, Yo) = fx(xo, Yo) (x – xo) +fy (xo, Yo) (y – yo). which
of the following is a normal vector to this tangent plane?
O<-fa(Xo» Yo), - (Xo, Yo), 1>
O<fi(xo» Yo), f,(xo, Yo), 1>
O<<f«(Xo» Yo), –fy(xo, Yo), f(Xo» Yo)>
<f« (xo» Yo), fy(Xo» Y.), f (Xo, Yo)>
Transcribed Image Text:The tangent plane to the differentiable function f(X, y) at the point (xo, yo) has the equation z – f(xo, Yo) = fx(xo, Yo) (x – xo) +fy (xo, Yo) (y – yo). which of the following is a normal vector to this tangent plane? O<-fa(Xo» Yo), - (Xo, Yo), 1> O<fi(xo» Yo), f,(xo, Yo), 1> O<<f«(Xo» Yo), –fy(xo, Yo), f(Xo» Yo)> <f« (xo» Yo), fy(Xo» Y.), f (Xo, Yo)>
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,